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Two-dimensional compressible convection in a polytropic layer with an imposed 
vertical magnetic field is studied in a series of numerical experiments. We consider 
a shallow layer, spanning only a fraction of a scale height in density, and increase the 
ratio (F') of the magnetic to  the thermal pressure in a regime where convection sets 
in a t  an oscillatory bifurcation. Initially there are stable periodic oscillations 
(standing wave solutions). For moderate values of /3 the only deviations from 
Boussinesq behaviour are where the field is locally intense but as /3 is decreased 
magnetic pressure fluctuations become increasingly important. When /3 is of order 
unity a t  the top of the layer standing waves become unstable a t  higher Rayleigh 
numbers and travelling waves are preferred. This is an essentially compressible effect 
in which magnetic pressure plays a crucial role. The associated bifurcation structure 
is investigated in some detail. 

1. Introduction 
Strong magnetic fields inhibit convection a t  the surfaces of stars with deep 

convective envelopes. Isolated flux tubes therefore coincide with cooler, darkcr 
patches and these spots are the most prominent signs of magnetic activity in stars 
like the Sun. The existence of sunspots and starspots has motivated detailed studies 
of magnetoconvection, mainly within the framework of the Boussinesq approxi- 
mation. Investigations of linear and nonlinear behaviour have confirmed that steady 
overturning convection is suppressed by strong magnetic fields (Chandrasekhar 
1961 ; Cowling 1976; Proctor & Weiss 1982). However, oscillatory convection may 
still occur if the ratio y of the magnetic to the thermal diffusivity is sufficiently small. 
This condition is satisfied in sunspot umbrae, where heat transport requires some 
form of time-dependent motion. Since stellar atmospheres are compressible it is 
important to relax the constraints imposed by the Boussinesq approximation and 
recent studies have explored both the effects of stratification and the role of local or 
global increases in magnetic pressure (Hughes & Proctor 1988). We shall investigate 
fully compressible time-dependent behaviour. 

Nonlinear treatments inevitably lead to large-scale numerical computation. Here 
there are two possible approaches. The first is to represent stellar processes in as 
much detail as possible. Thus Nordlund (1984, 1985) has simulated the interaction 
between convection and weak magnetic fields in the solar photosphere, while others 
have modelled stellar dynamos in spherical geometry (Moss 1986). The alternative is 
to construct idealized fluid dynamical problems that allow us to isolate individual 
effects and to investigate them in some detail. We prefer the latter approach. This 
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paper demonstrates that by systematically varying the parameters in idealized 
numerical experiments we can not only recognize different physical processes but 
also identify specific bifurcations which can be related to recent developments in 
nonlinear dynamics (Guckenheimer & Holmes 1983). Moreover, our results are 
relevant to other examples of double convection, with applications in the laboratory 
and the oceans as well as to astrophysics. 

In the absence of any dissipation a vertical magnetic field supports fast and slow 
magnetoacoust,ic waves in an unstratified layer. These waves differ not only in phase 
speed but also in the relative importance of the compressional and vortical 
components of the motion. A necessary condition for the Boussinesq approximation 
to be valid is that the ratio p of thermal pressure to magnetic pressure should be 
large; in that case the fast waves are just sound waves, which travel iuotropically, 
while slow waves travel along the magnetic field with the Alfve'n speed as transverse 
hydromagnetic waves. At the other extreme, when /3 < 1,  fast magnetoacoustic 
waves travel isotropically with the Alfvdn speed, while slow waves are purely 
compressional and propagate along the field at the sound speed (Priest 1982). In a 
weakly stratified layer such waves may become unstable in the presence of diffusion. 
In the Boussinesq limit slow magnetoacoustic waves are coupled to the thermal 
stratification. which can maintain oscillatory (overstable) motion against ohmic and 
viscous dissipation provided that y < 1 .  When p 4 1 the slow waves again become 
unstable in a superadiabatic temperature gradient. As p passes through unity there 
is a change in the convective modes from motion across the field to predominantly 
vertical motion along the field lines. Behaviour is more complicated for /3 of order 
unity, when fast and slow magnetoacoustic modes have similar speeds and are 
strongly coupled by the stratification (Cattaneo 1984 ; Hughes & Proctor 1988). The 
onset of oscillatory convection in a polytropic atmosphere has been investigated by 
Antia & Chitre (1979) and Cattaneo (1984). In this paper we explore behaviour in the 
nonlinear regime and show that compressibility leads to the appearance of stable 
travelling waves when p is of order unity. 

Two-dimensional compressible convection was studied numerically by Graham 
(1975) and Hurlburt, Toomre & Massaguer (1984). More recently, Hurlburt & 
Toomre (1988) have investigated nonlinear compressible magnetoconvection in a 
series of numerical experiments that has greatly extended our understanding of the 
subject. They were mainly concerned with steady convection and focused particularly 
on the role of magnetic pressure P, in the nonlinear regime. Even when p is large, so 
that magnetic pressure is unimportant in the absence of convection, convective 
eddies will concentrate magnetic flux into sheets where the field is locally intense and 
P, becomes comparable with the thermal pressure P. Continuity of total pressure 
17 = P f  P, then requires that P should decrease where P, is large; thus flux sheets 
are partially evacuated and the density is reduced where the field is strong. Magnetic 
buoyancy therefore augments thermal buoyancy a t  the base of the layer (where 
motion converges on a rising plane) but opposes it a t  the top. Owing to stratification 
the latter effect is more important, so magnetic pressure cooperates with magnetic 
tension to hinder convection. 

Hurlburt & Toomre surveyed a wide range of parameters but only described one 
example of oscillatory convection. In this series of papers we shall concentrate on 
time-dependent nonlinear magnetoconvection in a fully compressible fluid with g < 1 .  
We have carried out several sets of numerical experiments using a program similar 
to that of Hurlburt & Toomre (1988), which describes two-dimensional convection in 
a perfect gas with uniform properties. I n  these calculations we follow the evolution 
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of perturbations to  a static polytropic atmosphere with prescribed polytropic index 
m and density contrast x. The temperature is fixed a t  the upper and lower 
boundaries, where the vertical component of the velocity, the horizontal component 
of the magnetic field and the tangential component of the viscous stress all vanish. 
All quantities are assumed to be periodic in the horizontal direction, with wavelength 
A. The? we obtain solutions for different values of the Rayleigh number R and the 
ratio /3 = PIPm, measured a t  the midpoint of a static layer. 

In  the first two papers we consider the effects of increasing the magnetic pressure 
in a weakly stratified atmosphere. Part 1 is concerned with the regime where 
convection sets in a t  an oscillatory bifurcation, allowing either standing wave or 
travelling wave solutions. Part 2 deals with the kinematic regime, where convection 
sets in a t  a stationary bifurcation but hydrodynamic instabilities lead to the 
appearance of travelling waves and oscillatory streaming motion, which interacts 
with the magnetic field. In  the third paper (to be published elsewhere) we turn to a 
stratified layer with a density contrast x = 11 and a corresponding increase of 5 with 
depth, which models behaviour in the solar atmosphere. 

In  this paper, after setting up the problem, we study periodic oscillations in a box 
with aspect ratio h = 2. We find that these standing wave solutions, with two square 
rolls, give way to travelling wave solutions with four rolls in the box as the Rayleigh 
number is increased. In order to explain this transition it is necessary to understand 
both the associated bifurcation structure and the dynamical effect of local increases 
in magnetic pressure. The interplay between mathematical and physical aspects of 
the problem is perhaps the most interesting feature of this study. Some preliminary 
results were published by Hurlburt & Weiss (1987) and reproduced by Hughes & 
Proctor ( 1988). 

The equations governing two-dimensional compressible magnetoconvection are 
set out in the next section and reduced to dimensionless form. Nonlinear solutions are 
obtained numerically, using a two-step Lax-Wendroff scheme modified to allow 
semi-implicit treatment of diffusive terms. Linear stability is discussed in 93, where 
we show that deviations from Boussinesq results are relatively slight. Next, in $4, we 
cpnsider standing wave solutions with aspect ratio h = 2, comparing behaviour for 
p = ,32 (when magnetic pressure fluctuations are only locally important) with that 
for ,d = 8, when magnetic buoyancy is domjnant. In  95 we find that standing waves 
become unstable as I? is increased for fixed p = 8 and are replaced by travelling waves 
in which magnetic pressure fluctuations play a key role, though the waves travel with 
the same speed as slow magnetoacoustic modes in the Boussinesq approximation. 
Since the travelling waves appear with half the wavelength of the standing waves we 
consider the transition from standing waves to travelling waves with h = 1 in $6, 
where we establish tbat stable travelling waves are a compressible phenomenon, 
appearing only for /3 < 32. In $ 7  we explore the more complicated bifurcation 
patterns associated with a transition from two-roll standing wave solutions to four- 
roll travelling wave solutions when h = 2. Finally we discuss the physical origin of 
the travelling wave solutions in the concluding section. 

2. The two-dimensional problem 
2.1. The governing equutions 

We shall consider convection in a plane parallel layer of compressible Auid in the 
presence of an externally imposed vertical magnetic field. The fluid occupies the 
region 0 < z < d,  referred to Cartesian axis with the x-axis pointing downwards. We 
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suppose that the velocity u and the magnetic field B lie in the (x,z)-plane and that 
no quantities vary in the y-direction. The fluid is assumed to  be a perfect monatomic 
gas with constant heat capacities c p  and c,,, and the shear viscosity p, the thermal 
conductivity K ,  the magnetic diffusivity 7 and the magnetic permeability po are also 
assumed to be constant, The density p(x, 2, t )  satisfies the continuity equation 

and is related to the pressure P and the temperature T by the equation of state 

P = R,pT, (2 .2 )  

where R,  is the gas constant. It is helpful to  express the remaining equations in 
conservative form (Graham 1975; Hurlburt et al. 1984; Hurlburt & Toomre 1988). 
The magnetic field is solenoidal, so that 

V - B =  0, (2.3) 

and satisfies the induction equation, which can be written in the form 

aB 
- + V . f  = 0 ,  
at 

where L is an antisymmetric matrix with elements 

L,, = u,Bi-u,B5-7 4-1 , i , j  = 1,2 ,3  (Ej gt) (2.5)  

and ( V . f ) i  = aLi5/i3xj with (x1,x2,x3) = (x, y, 2). The energy equation can also be 
written in conservative form as 

where the vector M has components 

and the viscous stress tensor 

Finally, the equation of motion takes the form 

(2.9) 
a 
at 
- P U + V . N  = 0, 

where N is a symmetric matrix with elements 

(2.10) 

and g is the (constant) gravitational acceleration. 
The equations (2.1)-(2.10) are solved in the rectangular region (0 < x < Ad,O < 
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z < d )  subject to appropriate boundary conditions. We assume that the temperature 
is fixed a t  the upper and lower boundaries, so that 

T(z,O) = T,, T ( z , d )  = %+AT, (2.11) 

where AT is the temperature difference across the layer and To is a constant. We 
further assert that the total magnetic flux through the region remains constant and 
that the horizontal component of the magnetic field vanishes on the upper and lower 
boundaries, so that 

B, = 0 a t  z = O , d ,  r B , d r  = Bohd, (2.12) 

where B, is the magnitude of the uniform vertical magnetic field in the absence of 
convection. In  addition we suppose that the vertical velocity and the tangential 
components of the viscous stress vanish a t  the upper and lower boundaries, so that 

w = o ,  -- - 0  a t  z = O , d ,  (2.13) 

where u = (u, 0, w). Finally, we assume that all variables are periodic in x with period 
Ad, so that T(hd, z ,  t )  = T(0, z, t )  etc. 

In  order to write the equations in dimensionless form we adopt the layer depth d 
as our unit of length and transfer the origin to the plane z = -Tod/AT. Our unit of 
time is the reduced sonic travel time (d2/R, AT): and the density is scaled by the 
density p,, at the top of the layer in the absence of convection. The temperature is 
scaled by the temperature difference AT across the layer and the magnetic field by 
B,. The dimensionless thermal conductivity is then given by 

aU 

a2 

(2.14) 

All variables will henceforth be displayed in dimensionless form. Then (2.2) reduces 
to P = pT and (2.10) can be written as 

Nij = [P + P B ,  Bk] dtj +put uj - FB, Bi - (m + 1 )  z3 8, - 7ij, (2.15) 

where the strength of the magnetic field is measured by the dimensionless parameter 

(2.16) 

(the square of the ratio of the Alfvkn speed to the reduced sound speed). Here the 
Chandrasekhar number 

(2.17) 
. .  

and the Prandtl numbers 

= P C P K  c o  = llPoCp/K. (2.18) 

measure the ratios of the viscous and magnetic diffusivities to the thermal 
diffusivity, while 

m = -- gd 1 
R ,  AT 

(2.19) 
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is the polytropic index (see $2.2 below). I n  (2 .5)  and (2.8) 7 and ,a are replaced by 
CoK and aK respectively, while the energy equation (2.6) becomes 

+v.  p -+$lu(2-(m+l)z u - R V T f M  = o ,  (2.20) [ 1 1 
where y = c p j c ,  and 

(2.21) 

These dimensionless equations have to be solved in the domain (0 < x < A ,  xo < x < 
zo+ 1}, where zo = T,/AT. Thus thc state of the system is described by the six 
physical parameters m, K, zo, E', u and Q, together with the aspect ratio A .  

2.2. The static reference atmosphere 

The governing equations possess a trivial equilibrium solution describing a static, 
stratified layer with a uniform vertical magnetic field and heat transported entirely 
by conduction. The atmosphere is then a polytrope with 

m Z m + l  

T = z ,  p = ( t ) ,  P=--. 
Zo" 

(2 .22 )  

where the polytropic index m was defined in (2.19). Hence the ratio of the density a t  
the base of the layer to that at the top is given by the density contrast 

= (F)m. (2.23) 

For an adiabatically stratified layer m = l / (y-  1 ) ;  we shall consider a monatomic 
gas with y = 5,  which is unstably stratified if m < $. The degree of instability may be 
measured by the Rayleigh number with a local value 

where the quantities in square brackets are dimensional. Another important 
quantity is the ratio of the gas pressure to the magnetic pressure (or t,he thermal to 
the magnetic energy density) 

(2.25) 

This quantity is inversely proportional to the square of the ratio Q, of the Alfvkn 
speed vA to the sound speed vs given by 

(2.26) 

Note that the local value of the magnetic Prandtl number is proportional to the 
density so that 

(2.27) 
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It is often convenient to use the properties of the static reference atmosphere to 
characterize the state of the system. This is particularly appropriate when 
considering linear stability (Spiegel 1964; Gough et al. 1976; Cattaneo 1984); it  can 
then be shown that parameters evaluated in the middle of the layer can most readily 
be compared with Boussinesq caiculations as x + 1.  We therefore define 8 = R(zo +a), 
p = P(zo+$) ,  @ = @ ( z o + i )  and 5 = 6 ( z o + t )  and we use these quantities to describe 
the state of the convecting system. I n  practice many of our solutions have been 
obtained by solving the equations using the (unstable) reference atmosphere to 
provide initial conditions and introducing small velocity perturbations involving 
many lengthscales. 

2.3. Numerical methods 
Nonlinear numerical solutions are obtained for these two-dimensional flows using a 
two-step Lax-Wendroff scheme, modified to include diffusion of vorticity, magnetic 
field and heat. The basic approach follows that of Graham (1975). The Lax-Wendroff 
algorithm uses equations in a conservative form, much as equations (2.1)-(2.10) are 
written. In particular, the total mass of the system and the total horizontal 
momentum are exactly conserved. Further, since we solve for both components of B 
using the induction equation (2.4) in finite-difference form with an antisymmetric 
matrix L ,  the total magnetic flux in the region is also conserved to machine accuracy. 
The time advance occurs in two steps and involves the use of two spatially staggered 
meshes. Since we are interested in solutions with small Prandtl numbers here, where 
the thermal diffusion time is much smaller than any other timescale, we solve the 
thermal equation using a semi-implicit scheme as discussed in the Appendix. The 
other equations are solved using the explicit Lax-Wendroff time scheme and thus 
Courant conditions based on advection, wave propagation and diffusion must still be 
satisfied in the choice of maximum time step. Most of the calculations described in 
this paper used a mesh with 40 points in the vertical direction and some results were 
verified by doubling the spatial resolution of the mesh. A typical run of 500 
dimensionless time units took about 1 h on a Cray-1S computer. 

3. Linear stability 
In these two papers we shall restrict our attention to a fixed shallow reference 

atmosphere with zo = Q and a polytropic index m = 0.25. For this atmosphere the 
density contrast x z 1.63 and the density stratification is therefore relatively 
unimportant. In  astrophysical terms, the ratio of the layer depth to the density scale 
height a t  the upper boundary is m/zo = 1.5 and the ratio to the pressure scale height 
is (m+l) / zo  = 7.5. 

The relative importance of the magnetic pressure is measured by $he parameter F, 
which is inversely proportional to p. For our choice of parameters /I x 1.89/F, from 
(2.25). In  this pap:' we shall study the effect of increasing the magnetic pressure in 
the range 256 b /3 2 6 (0.007 < F < 0.32). Now the Boussinesq approximation is 
valid only if F < 1 (so that wA -g ws) and zo 9 m+ 1 (whence i t  follows that x % 1). 
Studies of linear and nonlinear convection in the absence of a magnetic field suggest, 
however, that Boussinesq results may remain an adequate approximation for x 5 5. 
As F is increased from zero the magnetic pressure becomes larger relative to the gas 
pressure. In  the nonlinear regime regions with strong fields are partially evacuated. 
Deviations from Boussinesq behaviour are therefore to be expected as F approaches 
unity. 
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We first consider bifurcations from the static equilibrium solutions of $2.2 in order 
to determine the range of validity of the Boussinesq approximation. In the 
Boussinesq limit there is a stationary bifurcation when R = R(e), where 

R(e) = R, + $* (A2  + 4) Q (3.1) 

for rolls of width +A while R, = n4(h2 + 4)3/4h4 is the bifurcation value in the absence 
of a magnetic field. For 5 < 1 and Q > n2(h2 + 4)' <( 1 + g)/h4a( 1 - 5) instability first 
sets in through a Hopf bifurcation a t  R = R ( O ) ,  where 

Q 
5(5+u)n2(h2+4) 

(Chandrasekhar 1961 ; Proctor & Weiss 1982). Thus R K Q for large Q a t  both 
bifurcation points. 

We want to study the effect of increasing the Rayleigh number without changing 
the structure of the reference atmosphere. Thus we keep m and x ,  fixed and vary the 
heat flux by altering the dimensionless thermal conductivity If; since we are 
concerned with oscillatory convection the values of CT and <,, are held constant. Then 
it follows from (2.16) and (3.2) that for Q sufficiently large (Q > lo4) the value of F 
a t  R = R ( O )  approaches a constant value of order unity, and the conditions for the 
Boussinesq approximation are therefore likely to be violated. Hence one must analyse 
the compressible system in order to understand kehaviour a t  large Q. For the linear 
calculations described in this section we take g = (T = 0.1. Figure 1 (a )  shows the 
values of R for the onset of steady (&(e)) and oscillatory ( R ( O ) )  convection as functions 
of the Chandrasekhar number Q for an aspect ratio h = 2, calculated with the 
program developed by Cattaneo (1984). The broken curves indicate the values 
predicted by the Boussin:sq expressions (3.1) and (3.2). Note that R(e) is substantially 
greater than & ( O ) ,  since < is small and Q is relatively large. Although R(e) is higher in 
t,he fully compressible case than in the Boussinesq limit, the two curves have the 
same limiting form. 

In  the parameter ranges with which we are concerned convection appears as an 
oscillatory instability and the Hopf bifurcation is apparently supercritical. At small 
Q the values of R ( O )  predicted by Boussinesq theory agree well with the fully 
compressible results. This confirms that oscillatory solutions will be insensitive to the 
variations in pressure and density across the layer ; any deviations from Boussinesq 
behaviour must be caused by the large field strengths as F approaches unity. Such 
deviations appear for Q > lo3, where the two curves begin to diverge significantly. 
At  first R ( O )  rises more slowly for compressible magnetoconvection than in the 
Boussinesq limit, suggesting the presence of some other driving mechanism. Then, 
for Q > lo4, R ( O )  increases more rapidly than R ( O )  : for Q $- lo4 we find that R ( O )  K Q1.14, 

while R ( O )  K Q from (3.2). We therefore find that > R(O) for Q > lo5. Since 
R ( O )  then increases more rapidly than R(e.O it is conceivable that steady convection 
may be preferred at very large Q for this aspect ratio. We shall not pursue this 
possibility here, instead concentrating on the region with Q < lo5. 

It is important to realize that R ,  Q and F cannot be varied independently. From 
(2.16), (2.24) and (2.27) 

F = ( m + l )  { 1--(m+l)  Y-1 }po;;"' 7 

Y 
(3.3) 



Nonlinear compressible magnetoconvection. Part I 

105 

4 x 104 

2x104 

R 
104 

4 ~ 1 0 ~  

2~ 103 

102 

595 

I \ '  
I I 

I - I \ 
I I 
I I 
I I - I I 

I I 
I I 

I I 
I f 

I 
I / 

_______------- 

@) I 

- 

- f -/' 
4 '  

/ 

- 

- 

' 

For our choice of parameters 

(3.4) 

from (2.25) and (2.26). In  figure l(a) we show lines of constant p :  as expected p 
decreases (and F increases) when Q is increased for constant R ,  but F also increases 
if R is decreased while Q is held constant. In  the Boussinesq limit we can use (3.2) to  
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predict the value of R(O) for large Q .  If this value is fed into (3.3) we find that F tends 
to a constant value F(O) a t  R = R ( O )  as Q +  00 and that 

4( 1 + CT) ( z ,  

n:2((+CT)(4+h2)z~’ 
(3.5) 

For our choice of parameters we find that F ( O )  x 0.38 (corresp9nding to  x 5 ) .  This 
provides an estimate of the largest value of F (lowest value of p) that can be reached 
in the convective regime. From (3.5) it  follows that the only way of increasing F ( O )  

significantly is to decrease both 6 and CT. In  numerical experiments it is inconvenient 
to have diffusivities much lower than the values we have chosen. Thus we are unable 
to approach the regime with 6 x 1 where overstable oscillations can appear even in 
astably stratified atmosphere, with m > l/(y- 1 )  (Cattaneo 1984; Hughes & Proctor 
1988). Further calculations are therefore needed to determine whether this curious 
instability develops into oscillations with significant amplitudes in the nonlinear 
regime. 

As we hav? seen, the stability boundaries in figure 1 ( a )  run roughly parallel $0 lines 
of constant p for large R.  In figure 1 ( b )  we show R(e) and R ( O )  as functions of p (or F )  
for the two aspect ratios, h = 1 and h = 2, that  will be considered in this paper. The 
value of R ( O )  is always less for h = 2 than for h = 1 ; in this parameter range we 
therefore expect convection to set in with rolls of square cross-section ”as R is 
increased for a box with h = 2. On the other hand, the minimum value of /3 for the 
onset of convection a t  a given value of R is typically less for h = 1 ; as F is decreased 
for a given value of R (R > 1.4 x lo4) oscillatory convection first sets in as rolls of 
width t even in a box with h = 2. Narrow rolls are favoured in a strong magnetic field, 
as in the Boussinesq regime. As R is further increased, we find that the Hopf 
bifurcation for rolls with h = t occurs a t  a higher value of F than that for h = 1 
provided R > 1.4 x lo5. It is possible that the”enve1ope of successive stability curves 
asymptotically approaches a fixed value of /3 as R +  co and h- t  0. 

In the Boussinesq approximation (valid only if F 4 1 and the density scale height 
H is large) the velocity zi is assumed to be solenoidal and acoustic modes are therefore 
filtered out. Thus fast magnetoacoustic waves are suppressed while slow magneto- 
acoustic waves reduce to transverse hydromagnetic waves which are coupled t9 
convection. For a fully compressible stratified layer in the limit of small F (large /I) 
the fast magnetoacoustic waves become acoustic-gravity waves. Our reference 
atmosphere was chosen so as to minimize the side effects of the unstable stratification. 
For a disturbance with wavenumber k these depend on the parameter e = (kH)-* ,  
where H = z/m (Lamb 1932; Priest 1982). Taking k = n: for the fundamental mode, 
we find that E x & at the middle of our reference atmosphere ( z  = J) and E x 0.46 a t  
the top ( z  = Q). The frequency w of this mode is approximately given by w2 = k26i x 
11, while the local cut-off frequency w, satisfies w: = ym(m + 2)/4z < 1.4 (Gough 
1989). Thus w > w, throughout the layer and so we are justified in regarding fast 
magnetoacoustic waves as ordinary sound waves in this limit. Slow magnetoacoustic 
waves correspond to disturbances travelling along the field a t  the Alfvkn speed and 
they are coupled to convection, giving rise to the oscillatory instability that we have 
described. As F is increased and the magnetic pressure becomes significant, fast and 
slow magnetoacoustic modes are coupled by the stratification and this interaction 
can be subtle when F is of order unity (as mentioned above). In a magnetically 
dominated layer, with F $ 1, the fast magnetoacoustic waves become magneto- 
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gravity waves, travelling almost isotropically with a speed that differs only slightly 
from B,, while the slow magnetoacoustic waves reduce to sound waves, travelling 
along the field and modified by the stratification. 

4. Nonlinear standing wave solutions ( A  = 2) 
The numpical experiments described in this paper are all for a perfect gas with 

y = and 5 = (T = 0.1 (so that 0.0707 < 5 < 0.1151). The thermal boundary condi- 
tions and the total mass in the layer corresFond to a static atmosphere with zo = and 
m = 0.25; thus the temperature increases by a factor (zo+ l ) /zo  = 7 across the layer, 
introducing significant non-Boussinesq effects, but there is only a modest density 
contrast (x x 1.63). From the linear results in the previous sections we might expect 
compressibility to be significant for F 2 8 x lo-*. The majorjty of our numerical 
simulations lie in the parameter range lop2 < F < 0.3(128 /3 2 6), with 4 x lo3 < 
R < 1.28 x lo5 and 5 x lo2 < Q < 1.5 x lo5, for aspect, ratios h = 2 and h = 1.  Figure 2 
shows most of the runs that were made, indicating the types of solution found a t  
different points in the (F,l?)-plane. Summaries of these results are presented in 
tables 2 4 .  

In  this section we discuss oscillatory magnetoconvection with h = 2 (corresponding 
to convective rolls with square cros$-section). We shall compare two mildly nonlinear 
simulations a t  different values of /3 in order to illustrate the effect of increasing the 
magnetic pressure. The parameters are defined by reference to figure 2 (a). For each 
value of we determine the value R ( O )  of the Rayleigh number at  the oscillatory 
bifurcation; then we increase R by factors of 2, approximately, while holding p 
constant. Runs with 2@O), &(O), 8&(O), 1 6 & ( O ) ,  322"' are labelled A, B, C, D, E, 
F respectively. Thus any run is specified by the value of (an integer) and the 
appropriate letter, as in table 1 (which includes par$meter values for all runs with 
h = 1 and h = 2). Note that increasing R for fixed /3 (as in figure 2j corresponds to 
ipcreasing both R and Q in figure 1 (a ) .  Since F attains a maximum value (F x 0.38, 
/? x 5 )  on the curve R = R ( O )  in figure 2 (a) the values of R/R(') evaluated a t  fixed 
/3 and at fixed Q are different. For example, case 32B has R = 4 x lo3 and Q x 
1.8 x lo3, so that R / R ( O )  x 1.8 a t  fixed Q, while case 8B has R = 5.4 x lo3 and Q x 
9.6 x lo3, so that R / R ( O )  x 1.4 a t  fixed Q. Thus it is difficult to provide a? 
unambiguous estimate of the degree of nonlinearity for runs a t  different values of p. 

From the linear results discussed in, the previous section we expect convection to 
set in a t  R = R ( O )  provided F 2 10-3(p < 2000). In  the immediate neighbourhood of 
this (supercritical) bi{urcation there exist nonlinear periodic solutions. We shall first 
explore the range of f i  over which stable oscillatory (standing wave) solutions can be 
found when R = 2I?(O) and then discuss two solutions in more detail. Table 2 lists the 
properties ofgtable periodic solutions for cases 6B, 8B, 32B and 12833. The period 7 

increases as /3 is decreased and its variation is roughly consistent with a relationship 
of the form r = 2/v, M 2 1 6  that would hold for undamped hydromagnetic waves in 
the Boussinesq approximation. Thus the oscillatory solutions can be regarded as slow 
magnetoacoustic standing waves, whose global properties are only slightly modified 
by compressibility. The obvious global measure of superadiabatic heat transport is 
the Nusselt number 
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FIGURE 2. Location of solutions inAthe (F,R^)-plane. (a )  A = 2: the curves show R^(O) and RceJ as 
functions ofF (on the lower axis) or /3 (on the upper axis). Nonlinear solutions are denoted by circles 
(standing waves) or squares (travelling waves) and hollow symbols indicate modulated solutions. 
(6) As (a,), but for A = 1. 

evaluated at z = 1 ; here FT is the total energy flux (cf. Hurlburt et al. 1984) and the 
dimensionless adiabatic gradient (dT/dz), = (m+ 1) (7- l) /y,  so that (dT/dz), = $ 
for the reference atmosphere in this paper. During an oscillation the Pjusselt number 
varies over the range Nmin < N < N,,,. The values of N,,, are given in table 2 and 
Nmin x 1 for all the solutions except case 6B (where Nmin x 0.8). The total kinetic 
energy E varies over the range 0 < E < Em,, and Em,, is greatest for case 8B. The 
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Values of I?( x 103) for cases run 
R ( 0 )  x 103 

li F 6 A B C D E F G 

6 0.3143 0.4472 3.50 7.0 14.0 28.0 56.0 - - 

8 0.2357 0.3873 2.77 5.4 10.8 21.6 43.2 86.4 - 

16 0.1179 0.2739 2.20 - 8.8 - - 70.4 140.08 
32 0.0589 0.1936 2.02 4.0 8.0 16.0 32.0 64,0 - 

64 0.0295 0.1369 1.93 - 8.0 16.0 32.0 64.0 - 

128 0.0147 0.0968 1.90 4.0 8.0 16.0 32.0 64.0 - 

256 0.0074 0.0685 1.90 4.0 8.0 16.0 - - 

TABLE 1. Rayleigh numbers for runs i? the oscillatory regime with h = 1 or h = 2. For each series 
of runs-with fixed j3 (or F )  the value of R is successively doubled, starting cloge to the value (labelled 
A) of R(O) for h = 2. These values can be used to calculate Q = (128R)/(9p). 

- 

Case 7 Nmax Ern,, M m a x  P m ,  max Pmin 

6B 5.04 1.36 0.039 0.42 0.37 0.42 
8B 5.50 1.35 0.09 0.58 0.53 0.24 
32B 10.5 1.43 0.074 0.30 0.45 0.47 
128B 25.0 1.16 0.025 0.13 0.20 0.72 

TABLE 2. Unmodulated standing wave solutions with h = 2 

table also lists the highest local values M,,, and Pm,max of the Mach number based 
on the vertical velocity 

and of the magnetic pressure 

during an oscillation, together with the lowest, local value pmin of the density. The 
effects of compressibility are most significant in case 8B an9 deviations from 
Boussinesg behaviour have become relatively unimportant for P = 128. 

When p = 256 convection still sets in a t  a Hopf bifurcation. Case 256B showed 
transient oscillatory behaviour followed by a transition to apparently steady 
convection with N e 1.63 and E w 128. The steady solution persisted for about 50 
dimensionless time units before losing stability and was followed by aperiodically 
modulated oscillations with asymmetric spatial structure. From studies of Bous- 
sinesq magnetoconvection with square rolls at a fixe$ valye of the R5yleigh number 
we expect to find subcritical steady convection for p < /3(e), where ,8(e) sz 530 is the 
value of /3 a t  the stationary bifurcation (R(e) w 8000). By analogy with Boussinesq 
calculations there should be a branch of unstable steady solutions bifurcating from 
p = p(e) which acquires stability in a saddle-node bifurcation a t  bmin < pee), so 
that there is a branch of stable steady solytions for all p > Pmin (Proctor & Weiss 
1y82). The Boussinesq results imply that Pmin decreases with increajing R,  so that 
pmin w$0,68 for 2 = 6300,10000 respectively, and suggest that Pmin tends to a 
limit (Pmin w 30) as R + 00 (Weiss 1981 6 ) .  The branch of oscillatory solutions that 
emerges from the Hopf bifurcation terminates in a heteroclinic bifurcation on the 
lower (unstable) portion of the steady branch. The behaviour of oscillatory solutions 

M = Iwl/(rT)$ (4.2) 

P, = AgqBI~ (4.3) 

" 1  
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as R is increased for fixed 1 should therefore depend on the value of b: Afar b 
sufficiently small the oscillatory branch will persist for all R while for 530 2 p 2 30 
the oscillatory branch will end in a heteroclinic bifurcation and there will be a 
transition from tirpe-dependent to steady behaviour. The result for case 256B 
indicates that for p = 256 the heteroclinic bifurcation occurs in the range 1900 < 
R < 4000 and that the upper branch of steady solutions exists but is unstable to 
perturbations that were suppressed in the Boussinesq approximation. Aperiodic, 
spatially modulated behaviour was also found in cases 256C, 128C and 128E as well 

as for b > P e ) ;  it will be discussed in Part 2. 
We shall compare the two cases 32B and 8B, with F = 0.0589 and F = 0.2357 

respectively ; we expect solutions to resemble those obtained for Boussinesq 
magnetoconvection in the former case while the effects of compressibility arc 
apparent in the latter. Figure 3(a-e) (plate 1) and figure 4(a-c) (plat,e 2) display 
standing wave solutions for these two cases a t  equally spaced instants in timc. Since 
the oscillations are controlled primarily by the magnetic field their frequencies are 
roughly proportional to the Alfvkn speed and so the time spanned by a complete 
oscillation in figure 3 is roughly four times that for half an oscillation in figure 4. In 
the left-hand panels of figures 3 and 4 the velocity field is represented by randomly 
placed arrows or streaklines. The length of an arrow is proportional to the local speed 
and its direction is everywhere parallel to the instantaneous velocity; the arrows are 
scaled by the same factor in all frames. The colour background indicates the 
associated temperature fluctuation 

T'(s, x ,  t )  = T(z, 2, t )  -2 (4.4) 

so that the underlying thermal stratification is suppressed. The colour coding follows 
tfhe spectrum and is such that blue and violet denote numerically increasing negative 
values of T while green and red denote increasing positive values of 2". The right- 
hand panels display lines of force of the magnetic field superimposed upon the total 
density in colour. We recall that the polytropic reference atmosphere has 1 ,< p(z) < 
1.63; here the range of colours from violet through blue and green to red denotes a 
range in density from 2 to 0 and the underlying stratification remains visible. Since 
the number density of field lines is proportional to the field strength, figure 4 contains 
twice as many field lines as figure 3. 

Case 32B in figure 3 illustrates how the fluid motions wind up the magnetic field 
until it is strong enough to  halt and then to reverse them. Thus the field provides a 
spring, as in the Boussinesq regime (cf. figures 6 and 7 of Weiss 1981a). The tempera- 
ture fluctuations T' are well correlated with the vertical velocity w : hot (red) fluid 
rises while cold (violet) fluid sinks. The density shows three effects. First there is the 
underlying polytropic stratification. Secondly the density fluctuations follow the 
temperature fluctuations, with hotter fluid being lighter (red) than its surroundings 
as in the Boussinesq approximation. Thirdly there are the effects of compressibility 
which appear only locally and principally a t  the top of the layer. There the density 
drops dramatically in regions where the magnetic field is compressed, reaching a 
minimum value of 0.45, i.e. less than half the unperturbed value of p(x,).  This is a 
consequence of the large magnetic pressure produced within the concentrated flux 
sheet. Although the magnetic pressure (L$) associated with the average field strength 
is small compared with the gas pressure P in (2.15), concentration of the field by the 
motion generates values of P, that are comparable with P.  This holds particularly 
in the upper portion of the layer, where the underlying pressure is least. Where the 
field is strong the gas pressure P drops in order to maintain a local magneto- 
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~IGUR,E 3. Nonlinear oscillatory magnetoconvection for an almost Boussinesq system with B = 32 and 
R=2R(O) (case 32B). The left panels show the spatial structure of the velocity streaklines and the 
temperature fluctuations 7'(x,z,t) at five almost equally spaced instants during a complete oscillation; the 
right-hand panels show the corresponding magnetic field lines and the total density p (x,z,t). Cold, heavy 
fluid is shown at the violet end of the spectrum and hot, light fluid at the red end. The relative times are 
(a) t/r = 0, (b) t/r = 0.196, (c) t/r = 0.397, (d) t/r = 0.59, (e) t/r = 0.798, where the period T = 10.19. 

H U R L B U ~  ET AL. (ficing p. 600) 
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FIGURE 4. Standing waves in a compressible layer with 0 =.8 and k = 2 p ’  (case 8B): streaklines, 
temperature fluctuations, field lines and density over half a complete oscillation, at times (a) f/T = 0, 
(b) r h  = 0.211, (5) f/T = 0.422, where the period T = 4.81. (d) The same, but for a travelling wave solution 
with 13 = 8 and R = 16p’  (case 8E). (e) Velocity streaklines and fluctuations in total pressure (x,z,t) 
for the travelling wave solution (case 8E) in the left panel and the standing wave solution (case 8B) in the 
right panel; low pressure is shown at the violet end of the spectrum and high pressure at the red end. 

HURLBURT ET AL 



Nonlinear compressible magnetoconvection. Part 1 60 1 

hydrostatic equilibrium (cf. Hurlburt & Toomre 1988) and the consequent 
reduction of density is achieved by partial evacuation of the flux sheet. The 
decreased density in turn leads to a buoyancy force which opposes the descending 
motion in regions where the field is swept together by a horizontally converging flow. 
Later, as the velocity reverses, the buoyancy accelerates the ascending fluid. Because 
the local region of magnetic buoyancy tends to generate motion on its own scale the 
reversal first appears as a narrow convective plume within the flux sheet, as seen a t  
t z 0.67 in figure 3(d). Note that magnetic buoyancy assists upward motion at the 
lower boundary and resists downward motion at the upper boundary, where it is 
more effective. Thus the main dynamical consequence of compressibility is that 
magnetic buoyancy produces short bursts of upwelling into the flux sheets as the flow 
reverses. These vigorous spurts have no analogue in the fully Boussinesq regime. 

When the field strength is doubled the oscillations assume a different form. The 
magnetic field for case 8B, in figure 4, is relatively less distorted than in figure 3. On 
the other hand, magnetic buoyancy is more potent. The velocity and temperature 
appear similar in cases 8B and 32B, although smaller-scale motions (with 
corresponding temperature fluctuations) are no longer evident in the former case. 
However, the density fluctuations (and hence the buoyancy forces) are now 
controlled by variations in magnetic pressure rather than by changes in temperature. 
Moreover, variations in IBI and T have the same horizontal scale in figure 4 and so 
magnetic buoyancy drives large-scale mot: 2, rather than the local spurts of figuse 
3 ( d ) .  When the field lines are only slightly distorted, as in figure 4(b), the density is 
mainly determined by the temperature, so motion is driven by thermal buoyancy. As 
the field is modified magnetic buoyancy takes over. I n  figure 4 (a) thermally induced 
variations in density can still be detected but the predominant effect is a reduction 
in p where P, is large and a corresponding increase where P, is small. At the base of 
the layer thermal and magnetic buoyancy act together; a t  the top they are opposed. 
Since that is where magnetic buoyancy is most powerful, the net effect of 
compressibility is that the magnetic pressure assists magnetic tension (which 
provides the spring) in opposing any motion. Hence the oscillations have a short 
period and low amplitude. 

In  order to contrast detailed properties of these oscillatory solutions we display 
several time series in figure 5 (a) and (b) for cases 32B and 8B respectively. Successive 
rows show the variation with time of the kinetic energy E (which is almost 
sinusoidal), the minimum value of the density pmin, the peak value of the magnetic 
field expressed as an Alfv6n speed 

(4.5) B,,, = F% = ( p o ~ * p o  AT)&, 

where B is the maximum value of IBl (cf. (2.15) and (2.16)), the peak value M,,, of 
the Mach number based on the vertical velocity, and the Nusselt number Nevaluated 
a t  z = 1 .  

B,, for p = 32, displayed in figure 5 (a), shows a nearly sinusoidal variation with 
a period 7 = 10.5, about twice the AlfvBnic transit time. At its peak the magnetic 
field a t  the base of the layer is amplified almost fourfold over its average value. The 
minimum density follows the maximum field with some significant deviations. At 
times of small field amplification pmin changes slowly but near maximal amplification 
it varies rapidly ; pmin reaches its minimum value shortly before B,,, attains its peak 
and then increases to more moderate values. Both M,,, and N possess more 
structure: M,,, rises rapidly to 0.30 as the field begins to relax towards a less 
concentrated state and then levels off, while B,,, is a minimum before dropping to 
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0.12 as B,,, increases once more. The jagged peak in M,,, is caused by magnetic 
buoyancy within the flux sheets, which provides an impulse as the field begins to 
unwind ; the resulting motion fills the flux sheets and eliminates the extra buoyancy. 
Thus a flux sheet is only evacuated for part of its lifetime. Note that the rapid rise 
in the vertical velocity is a consequence of density changes caused by pressure 
fluctuations. This effect is excluded in Boussinesq magnetoconvection where the 
velocity typically reaches a peak when B,,, is a minimum (Weiss 1 9 8 1 ~ ) .  However, 
N reaches its peak just as Mmax approaches its minimum and B,,, is beginning to 
increase. This confirms the impression from figure 3 that the strong rising flow caused 
by magnetic buoyancy within the flux sheet is only a local phenomenon. Indeed, 
other global properties of this solution (e.g. the kinetic energy) behave much as in the 
Boussinesq limit despite the difference in the detailed structure of the motion. 

When B = 8 the period r = 5.49, suggesting that r K Bol although the two 
solutions are very different. The variation of B,,, in figure 5 ( b ) ,  shows a slight 
asymmetry, with the rise time longer than the decay time. The peak value is slightly 
greater than that for p = 32 but only corresponds to a doubling of the average field 
strength. The minimum density also shows a slight asymmetry and follows B,,, 
more closely than in the previous example (though pmin precedes B,,, by a small 
phase shift). The lowest value of pmin is about one quarter of the mean density, 
indicating a greater degree of evacuation than before. M,,, attains a higher peak of 
0.59 and both M,,, and N exhibit more regular variation. The peak value N is only 
1.35 ; the degree of field concentration, the maximum field strength and the Nusselt 
number all decrease with increasing F .  Finally we note that the slight asymmetries 
in the variations of B,,,, M,,, and pmin, as well as differences in phase, are necessary 
in order to extract energy from magnetic buoyancy forces. 

5. Travelling waves in magnetoconvection 
When convection first appears at a Hopf bifurcation the complex eigenfunctions 

at the bifurcation point have the form u = U(z)expi(azfwt) etc., where a is the 
horizontal wavenumber of the perturbation. In an infinite layer these solutions 
correspond to travelling waves, with u K sin ( a x f w t ) ,  or to a standing wave, with 
u cc sin ax cos wt (for a suitably chosen origin in the (5,  t)-plane). In a finite region of 
width A the fundamental mode has a = 2x/h and the allowable solutions depend on 
the choice of lateral boundary conditions. If the horizontal velocity u = 0 a t  x = 0, 
A (as in most Boussinesq calculations), then only standing waves are allowed; if 
periodic boundary conditions are imposed then both travelling wave and standing 
wave solutions are permitted. Thus two branches of time-dependent solutions 
emerge from the same Hopf bifurcation at R = R ( O )  and nonlinear effects determine 
which branch is preferred. For example, laboratory experiments on convection in a 
rotating system show oscillatory behaviour, corresponding to standing waves 
(Rossby 1969) while travelling waves have been observed for convection in a two- 
component (ethanol-water) mixture (e.g. Walden et al. 1985). I n  numerical 
experiments on two-dimensional thermosolutal convection travelling waves were 
first detected by D. R. Moore (private communication) and have since been 
investigated in considerable detail (Knobloch et al. 1986; Deane, Knobloch & 
Toomre 1987). 

The results presented in $4 show that standing wave solutions with 2 = 2.&(O) are 
stable for h = 2. If, however, we take case 8B in figure 4 and increase the Rayleigh 
number by a factor eight while holding F fixed then the standing waves evolve into 

20 FLM 201 
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FIGURE 6. Travelling waves with F z 0.24 and 8 = 16R'O) (case 8E). (a) Velocity streaklines and 
( b )  magnetic field lines at equally spaced instants in time, separated by a time interval 6t x 1.9. The 
wave pattern propagates with a speed v = 0.126 towards the right. 
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stable travelling waves. Figure 6 shows the velocity and magnetic field for case 8E 
(R = 43200, Q = 38400) at five equally spaced instants in time. There are now four 
rolls in the computational domain and the pattern is translated a t  a uniform velocity 
from left to right. Each roll is roughly triangular in cross-section and the rolls with 
a clockwise sense of motion point upwards while those with anticlockwise motion 
point downwards. (There is an equivalent solution with the rolls oppositely oriented 
and the wave travelling to the left.) Rising fluid no longer moves vertically. Instead, 
a continuous jet of fluid zigzags from top to  bottom of the layer along the peripheries 
of the triangular rolls. Within this jet the horizontal velocity is in the same direction 
as the wave velociby. Since there is no net momentum in the system the mass flux 
in the jet is balanced by oppositely directed motion elsewhere in the layer. The 
magnetic field is compressed at the narrower vertices of the rolls but is much weaker 
a t  their bases. In  the interior of the layer the field direction is more or less parallel 
to the jet though the boundary conditions ensure that u and B are perpendicular a t  
z = zo, zo+ 1.  Since the pattern remains steady in a reference frame moving with the 
wave velocity all global measures of the solution are invariant in time. Here N x 2.4, 
while Pm,mlLx w 0.8, M,,, x 0.45, pmin x 0.35 so the solution is far from the 
Boussinesq regime. 

Figure 4 (d ) shows the relationship between velocity and temperature fluctuations 
(on the left) and magnetic field and total density (on the right) for this travelling 
wave solution. Comparison with figure 4(a-c) shows that the mirror symmetry about 
planes separating adjacent rolls, which is present in the standing wave solution, is 
broken in the travelling wave solution. (Note, however, that the Lagrangian 
trajectories of individual fluid elements still conform to a roughly rectangular 
pattern as the triangular waves pass by. I n  contrast, travelling waves in 
thermosolutal convection have rolls with trapezoidal cross-sections which become 
more marked if individual trajectories are followed.) This loss of symmetry in the 
nonlinear regime is associated with the distinction between positive and negative 
wave velocities. It is shown most clearly by the prograde velocity in the jet. 

The temperature fluctuations are produced by the convective motion. For the 
standing wave solution, symmetry requires that the temperature and velocity should 
maintain the same phase in x, though the temperature lags in time. I n  the travelling 
wave solution the temperature lags behind the velocity pattern as it moves. The 
density fluctuations in figure 4 ( d )  are centred on regions of strong field a t  the upper 
and lower boundaries, confirming that the flux sheets are partially evacuated. Once 
again the density distribution reflects variations of pressure rather than variations 
of temperature. 

Pressure variations are important in the dynamics of these travelling waves. 
Figure 4 ( e )  shows, on the left, streaklines for the travelling wave solution in figure 6 
superimposed on the fluctuations in total pressure, 

nl(s, 2 ,  t )  = P+'@qlq2-- ( P + ' / Z , m ) .  (5.1) 

The horizontally averaged values of 17' are negative in the interior of the layer and 
positive a t  the boundaries while minima are located a t  the centres of the rolls. For 
fixed z ,  17' is a maximum (al7'/ax = 0) on the jet. This contrasts with the behaviour 
of standing wave solutions, as illustrated on the right in figure 4(e). The relation 
between pressure and velocity varies during an oscillation but the illustration shows 
a typical pattern for case 8B. Here the pressure maxima are aligned with rising and 
falling plumes, with clear minima where the horizontal speed is greatest. 

In case 8E the waves travel with a velocity v rs 0.215. At the centre of the layer 
20.2 
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t "A 

FIGURE 7. Slow magnetoacoustic waves in the Boussinesq approximation. Sketch illustrating the 
relationship between the group velocity (parallel to the magnetic field B) ,  the phase velocity wp of 
plane waves travelling at  an angle 0 to the field and the velocity w of travelling waves produced by 
interference between waves travelling in directions 8, R - 8 to 8. 

the sound speed Gs w 1.05 and the AlfvBn speed G, w 0.41. We recall that in an 
unstratified medium with a uniform vertical magnetic field such that 0 = vA/vs < 1 
pure Alfvkn waves and slow magnetoacoustic waves can travel vertically a t  the 
Alfvdn speed while fast magnetoacoustic waves can travel horizontally with a phase 
velocity v = (vi+t$)i. Fast waves travelling in the 2-direction would be unaffected 
by horizontal boundaries ; motion would be purely longitudinal and driven by the 
enhancement (reduction) of total pressure at condensations (rarefactions). The 
actual wave speed is, however, significantly less than the sound speed so the 
travelling waves are not examples of fast magnetoacoustic waves. 

For @ Q 1 the slow magnetoacoustic waves reduce to transverse hydromagnetic 
waves, representing disturbances that travel along the field a t  the Alfvkn speed. In 
the Boussinesq limit undamped plane hydromagnetic waves travelling a t  an angle 
8 to the vertical magnetic field have a phase velocity up = vA cos 8. Such waves will 
be reflected at  a horizontal plane and a configuration with boundaries at z = z,,, z,, + 1 
therefore acts as a waveguide. Two waves of equal amplitude, travelling at  angles 0, 
x-0 to  the vertical with wave vectors x(tan 0,0, & 1) can be combined to produce a 
travelling wave with horizontal wavelength A = 2 cot 0,  as indicated in figure 7. Then 
the wave travels with the speed of the wavefronts, so 

(5.2) v = u,/sin 8 = vA cot 8 = $hv,. 

Although isolated disturbances only travel along the magnetic field the boundary 
conditions allow horizontally propagating waves. Moreover the four-roll solutions 
that we have found correspond to waves with h = 1 and v = $A. In  our case the 
waves travel with a velocity v x 0.536,, suggesting that they are essentially slow 
magnetoacoustic waves and still adequately described within the Boussinesq 
approximation. (The relevant small parameter is really 62 w 0.15.) 

Nevertheless, the correspondence between u and 17' in figure 4(e) shows the 
pressure fluctuations are important in the nonlinear regime. For waves driven by 
fluctuations in total pressure only, the horizontal component of the equation of 
motion takes the form 

p-[u(x-vt ,  a z ) ]  = --[[nl(2-vt, a z ) ] .  
at ax (5.3) 
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Hence it follows that 17' = pvu. In particular, for fixed z the maxima of the pressure 
fluctuations and the prograde velocity must coincide. This clearly holds for figure 
4(e ) ,  where 17' is high on the jet. We note, moreover, that since the pressure 
fluctuation 17' is a maximum a t  stagnation points on the upper and lower boundaries 
17' would attain a minimum where lul was a maximum for rolls with rectangular 
cross-section. With a triangular cross-section it is possible for both 17' and the 
prograde velocity to be maximal a t  the vertices. The appearance of triangular rolls 
and the associated jet can therefore be explained if pressure fluctuations are locally 
more important than curvature forces in the equation of motion. 

Our discussion of travelling waves has so far been related only to the solutions 
illustrated in figures 6 and 7, for case 8E. Similar waves are found when the Rayleigh 
number is doubled (case 8F) and also when F is increased from 0.24 to 0.31 (case 6E). 
We did not, however, find travelling wave solutions for runs with h = 2 and F z 0.06 
(p  = 32). These resuits all suggest that the travelling waves are a 'low p' 
phenomenon ; when p = 6 the magnetic pressure is almost equal to the thermal 
pressure a t  the upper boundary. Since they only appear with rolls of width 0.5 the 
interaction between standing wave and travelling wave solutions is best explored in 
a narrower domain with h = 1. 

6. Transition from standing waves to travelling waves ( A  = I )  
In  systems where convection sets in through an oscillatory (or Hopf ) bifurcation 

the first question to  be answered is whether standing waves or travelling waves are 
preferred in the neighbourhood of the Hopf bifurcation. The two-dimensional 
problem is periodic in x and symmetric with respect to lateral translations and to 
reflection in a vertical plane. These are symmetries of the orthogonal group O(2) and 
the Hopf bifurcation with O(2) symmetry is discussed by Golubitsky & Stewart 
(1985) and Stewart (1988). The bifurcating solutions have spatial symmetries 
corresponding to the groups SO(2) and 2, for travelling waves and standing waves 
respectively. Provided that both solution branches bifurcate supercritically, the 

that with lesser amplitude is unstable (Ruelle 1973; Golubitsky & Stewart 1985; 
Knobloch et al. 1986). In  the case of thermosolutal convection, where the amplitude 
equations are degenerate, travelling waves are always preferred (Bretherton & 
Spiegel 1983; Knobloch et al. 1986; Deane et al. 1987). 

If the evolution equations are extended by including higher-order terms i t  becomes 
possible to describe secondary bifurcations, giving rise to  branches of mixed-mode (or 
modulated wave) solutions that allow a transfer of stability from standing waves to 
travelling wave or vice versa (Deane et al. 1987). Dangelmayr & Knobloch (1987) 
have carried through a more ambitious programme : they analyse the relationship 
between standing wave, travelling wave, modulated wave and steady solution 
branches by unfolding the degenerate (codimension- two) Bogdanov bifurcation with 
O ( 2 )  symmetry and assemble thirty allowable bifurcation diagrams. 

Although there has been no systematic search for travelling waves in Boussinesq 
magnetoconvection, behaviour in the neighbourhood of the oscillatory bifurcation 
has been studied for rolls with different aspect ratios. For Q % 1 ,  it  follows from (3.2) 
that  R(O) is a minimum for narrow rolls, with h - &-a; in that  limit, travelling waves 
are apparently preferred (Proctor 1986). As R(O) is increased wider rolls rapidly 
become unstable. A discussion of the codimension-two bifurcation for h = 2 4 2 ,  in 
the limit g , [ + O ,  indicates that  standing waves are preferred (Nagata 1986; 

branch with greater r.m.8. amplitude (aver I, ged over space and time) is stable and 
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Case 

8C 

16C 

32C 

64C 
64D 

128C 
128D 

256C 

(8D) 

(32D) 

7 

5.4 
5.3 

7.2 

9.9 
8.8 

14.0 
12.1 

21 
12.2 

39 

N m a x  

1.18 
2.29 

1.08 

1.07 
1.98 

1.07 
1.69 

1.06 
1.69 
1.05 

Emax 

0.007 
0.032 
0.007 

0.004 
0.035 

0.004 
0.028 

0.003 
0.028 

0.003 

M m a x  

0.2 1 
0.50 
0.18 

0.13 
0.37 

0.12 
0.29 

0.12 
0.29 

0.11 

P m ,  max 

0.27 
0.56 
0.20 

0.1 1 
0.50 

0.08 
0.39 

0.05 
0.40 

0.03 

P m i n  

0.70 
0.34 
0.77 

0.87 
0.53 

0.89 
0.59 

0.92 
0.58 

0.93 

TABLE 3. Unrnodulated standing wave solutions with h = 1. Brackets indicate unstable cases 

Case V N E M m a x  P m , m a x  P m i n  

6D* 0.21 1.91 0.041 0.43 0.7 0.4 
6E * 0.223 2.37 0.053 0.49 0.81 0.30 

0.190 1.13 0.008 0.18 0.275 0.74 
81) 0.198 1.86 0.041 0.37 0.661 0.45 

(8C) 

8E 0.215 2.39 0.056 0.45 0.852 0.35 
8F 0.215 2.71 0.061 0.52 0.92 0.28 

16F 0.168 2.80 0.059 0.47 0.91 0.42 

0.101 1.03 0.002 0.08 0.076 0.92 
32D 0.116 1.42 0.019 0.17 0.323 0.71 

(32C) 

32E 0.126 1.93 0.031 0.25 0.541 0.61 
32F 0.130 2.41 0.038 0.37 0.603 0.57 

32F 0.087 2.7 0.012 0.16 0.30 0.56 

TABLE 4. Unmodulated travelling wave solutions with h = 1. Brackets indicate unstable cases; 
asterisks indicate cases with h = 2 

(u= 1) 

Dangelmayr & Knobloch 1986). In  what follows we shall first describe relevant 
numerical experiments on compressible magnetoconvection and then attempt to 
relate them to these theoretical results. 

= 8, 32, 64, 128 and 256. For each 
value of p we investigate the nature of the preferred time-dependent solution by 
increasing R (by factors of two) starting just above the values R(O) a t  the oscillatory 
bifurcation. Figure 2 ( b )  indicates the runs made and the nature of the preferred 
solutions; further details are provided in tables 3 and 4. The branches of standing 
waves and travelling waves apparently emerge supercritically a t  ff(O). In  the 
neighbourhood of the Hopf bifurcation we expect one of these branches to be stable 
and the other to be unstable. The growth rates of the relevant perturbations are, 
however, proportional to (&-I?(’)) and unstable solutions may survive for a long 
time. Certain choices of initial conditions may therefore lead to persistent transient 
behaviour; in particular, we find that simple perturbations to a static solution often 
develop into nonlinear standing wavep even when travelling waves are preferred. 

We consider first the runs with p = 8, where travelling waves were found at  

We hav? obtained solutions for h = 1 with 
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R = 4.52R'O) for case 8E (cf. figure 6). For case 8C ( R / R ( O )  % 1.13) the run, started from 
a perturbed static solution, developed into stable standing waves with the properties 
list,ed in table 3. Another run, started from a travelling wave solution (for case 8E), 
yielded an almost steady travelling wave with properties listed in table 4. A third 
run, started from a linear combination of the previous pair, eventually settled down 
to a pure standing wave solution. The same procedure was repeated for case 8D 
(R/R(') x 2.26). Again both standing waves and travelling wave solutions were 
obtained but the linear combination settled down to a pure travelling wave solution. 
Travelling waves were also found for cases 8E and 8F. As expected, the triangular 
cross-section of the rolls and the associated jet become more prominent as R is 
increased. In  the unstable travelling wave solution for case 8C the cross-section 
deviates pnly slightly from a rectangle. 

With p = 16 we found a stable standing wave solution for case 16C and a stable 
travelling wave solution for case 16F. Case 16G (with R / E ( O )  x 17)  exhibited more 
complicated behaviour, with a modulated travelling wave solution in which N varied 
periodically about its mean value with an amplitude of about 6 % and a modulation 
period 7, x 5.25. 

Runs for /? = 32 show behaviour similar to that found for 1 = 8. For case 32C 
(I?/&) x 1 . 1 1 )  the stable standing wave solution has N,,, x 1.07, Em,, w 3.4. 
Travelling waves have N x 1.034, E x 1.61 and show a slight periodic modulation 
with very slowly increasing amplitude, while a combination of the two ends up as a 
standing wave. For case 32D it is again possible to generate standing wave or 
travelling wave solutions but a combination develops into a travelling wave. Cases 
32E andAF also yield steady travelling waves. 

With p = 64 standing waves seem to remain stable up to R / R ( O )  x 2.3 (case 64D) 
and a quasi-periodic modulated travelling wave appears in case 64E. The Nusselt 
number and the kinetic energy vary cycli'cally with 1.2 < N < 2.4 and 3 < E < 35 
but are bounded away from their values for the static state. The cyclic variation has 
a period 7 x 11.8 and is itself modulated with a period rm x 44. Although the 
velocity reverses its direction, there is no symmetry plane between adjacent rolls. 
Figure 8 ( a )  shows streaklines when the kinetic energy is near a local maximum. The 
rolls have a slightly triangular structure, with their centres alternately displaced 
upward and downward (as in the travelling wave solutions). This modulated wave 
seems to be a 'mixed-mode' solution associated with the transition from standing 
wave to travelling wave solutions. When R is increased, however, no travelling waves 
are found. The solution for case 64F (l?/&(') x 9.1) is aperiodically modulated and 
shows a greater variety of spatial structure, varying from the asymmetrical rolls in 
figure 8 ( b )  to  the almost symmetrical p5ttern of figure 8 (c) .  

No travelling waves were found for p = 128. At g/R(") x 1.19 (case 128C) runs 
started either by perturbing the static solution or from a travelling wave both 
converged on a standing wave solution with period r x 21. Case 128D yielded a 
quasi-periodic modulated wave with a cycle period 7 % 19 and a modulation period 
7, x 66. This is apparently a mixed-mode solution of the same type as case 64E. 
Cases 128E and 128F both led to aperiodically modulated waves. 

Finally, case 256C provided a standing wave yi th  a longer period (7 x 39). From 
figure 1 ( b )  the stationary bifurcation occurs a t  p(e) x 370 for R = 8000 and ther? is 
no longer an oscillatorynbifurcation beyond the codimension-two bifurcation a t  /3 = 
430. Indeed, a run at p = 512,R = 8000 showed a solution whose amplitude grew 
monotonically from an initial perturbation until it saturated to give a transient 
steady solution which subsequently lost stability and was followed by periodic 
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FIGURE 8. Quasi-periodic and aperiodic modulated waves ( A  = 1). (a )  Streaklines for quasi-periodic 
mixed-mode solution when the kinetic energy is large (case 64E). (b ,  c) Symmetry breaking in the 
aperiodic solution for case 64F. 

oscillations that are qyalitatively different from those described here. This behaviour 
(which is absent for p < 256) will be discussed in Part 2. 

From these numerical experiments i t  is clear$hat stable standing wave solutions 
exist for R x 2 R ( O )  over the whole Tange 256 2 p 2 8. The pe;iod r of these solutions 
is plotted logarithmically against /? in figure 9(a) .  For 16 < /3 < 128 these results are 
roughly consistent with a relationship of the form 

2 2 -  " 1  

which would hold for undamped standing waves in the Boussinesq approximation. 
Moreover this expression for r is independent of the aspect ratio h andAfigure 9 ( a )  
confirms that the periods for h = 1 and h = 2 differ only slightly. For /3 > 128 the 
period r increases qore  rapidly. This is to  be expected since there is a codimension- 
two bifurcation a t  p x 430, where R$') = R$). At such a degenerate bifurcation there 
are two zero eigenvalues, so the period of the oscillations must become infinite. Over 
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FIQURE 9. S\anding waves and travelling waves (A = 1) .  (a) Period 7 of standing waves as a 
function of /?; circles and squares indicate results for A = 1 , 2  respectively. (b) Velocity 6 of 
travelling waves as a function of the Alfv6n speed GA. 

the range 2 16 the pe$odic oscillations are adequately described by the Boussinesq 
model; it is only for /3 < 8 that compressional effects raise the period 7 above the 
value given by (6.1). 

In the numerical experiments travelling wave solutions were always unstable for 
R sufficiently close to The travelling waves acquired stability as R was increased 
for /3 < 32. We can describe such transitions by normal form equations that are 
generically valid in the neighbourhood of the initial bifurcation and this description 
will remain qualitatively correct over a finite range as the parameters are varied 
(Guckenheimer & Holmes 1983). In  the neighbourhood of the Hopf bifurcation the 
interaction between weakly nonlinear travelling waves and two-roll standing waves 
can be modelled by the simplified normal form equations 

where r l ,  r2 are the amplitudes of travelling waves propagating to the left and right 
respectively, the parameter h K (&-a(')) and a ,  b are real constants with u2 + 1 (cf. 
Deane et al. 1987). The system (6.2) possesses a trivial solution rl = r2 = 0 which is 
unstable for A > 0, together with four non-trivial steady solutions : r1 = 0, ri = h and 
r2 = 0 , r :  = h (travelling waves), r; = rl (standing wave) and r;+ri  = -a/b (r;  + ril 
a/b  < 0, modulated wave). Figure 10 shows bifurcation diagrams for the system (6.2) 
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I1 b4 I 

I11 I IV 

FIGURE 10. Bifurcation diagrams for standing waves and travelling waves in the (a, b)-parameter 
plane for the system (6.2). Each diagram shows the amplitude [ A [  plotted against the control 
parameter h for standing wave (SW), travelling wave (TW) and modulated wave (MW) solutions. 
Full lines indicate stable solutions and broken lines indicate unstable solutions. 

in different quadrants of the (a ,  b)-plane with the total amplitude A = (rf+r$ 
plotted against A. In the neighbourhood of the bifurcation at  h = 0, standing waves 
are stable if a < 0 and travelling waves are stable if a > 0 ; moreover the solution that 
is stable has the greater value of A 2  (Knobloch et al. 1986). Note that A* a Em,, for 
standing waves wkile A2 a 2E for travelling waves. 

Our results for p = 32 correspond to quadrant 11 of figure 10. For @ - R ( O ) )  small 
(case 32C) standing waves are stable and E,,,/2E x 1.06, where E is the kinetic 
energy of the travelling wave solution. In case 32D, stability has been transferred to 
the travelling wave solutions so modulated wayes must exist for some Rayleigh 
numbers in the range 1.11 < R / R ( O )  < 2.22. For /3 = 8 standing waves are still stable 
in the neighbourhood of the Hopf bifurcation but for case 8C we found E,,,/2E z 
0.48, suggesting that higher-order terms have become significant in th? evolution 
equations. The reference atmosphere defined in $2.2 is stable for all R if /3 < 3. It is, 
however, possible to  choose m and z,, so that convection occurs for lower values of /3 
and there may then be a transition to a regime in wbich travelling wav$s are 
preferred (corresponding to quadrant I of figure 10). If /3 is increased from /3(O) for 
some fixed R > 15000 we expect travelling waves to be stable in the neighbourhood 
of the ossillatory bifurcation. 

With p = 64 we found a modulated wave solution (case 64D) which apparently did 
not develop” into a steady travelling wave as R was increased. We suggest that the 
results for p = 128 correspond to quadrant 111 of figure 10, with a ‘stable’ standing 
wave solution for all R (the turning point might be removed by adding suitable 
higher-order terms to (2.3)). Behaviour is, however, made more complicated by 
spatial modulation of the standing waves. This involves narrower rolls, corre- 
sponding to h = t ,  which are not represented in (6 .2) .  That interaction leads to 
further bifurcations which we shall ignore here, though they will be menti9ned in $7.  

We saw from figure l ( b )  that if R is increased from R ( O )  for fixed /3 then the 
oscillatory branch and the steady branch can remain separate over the range with 
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FIGURE 11. The relationship between branches of standing wave, travelling wave and steady 
s_oiutions as R is increased for fixed Q. Schematic bifurcation diagrams showing Ek as a function of 
R for cases where (a)  standing waves (SW) are always stable and ( b )  standing waves transfer 
stability to travelling wav_es (TW) through a branch of modulated waves (MW). Steady solutions 
(SS) are stable for large R. Filled circles and hollow circles denote local and global bifurcations 
respectively. 

which we are concerned. On the other hand, if R is increqsed for fixed Q then a 
increases until, from figure 1 (a ) ,  2 = for some value of p. Thus it is appropriate 
to consider also the relationship between the branches of travelling wave, standing 
wave and steady solutions. By analogy with Boussinesq magnetoconvection with 
h = 1, we expect the steady branch to bifurcate (subcritically) in the direction of 
increasing l? (Proctor & Weiss 1982). The standing wave branch terminates in a Hopf 
bifurcation from the steady branch, while the travelling wave branch terminates in 
a pitchfork bifurcation. The appropriate bifurcation diagrams are sketched in figures 
11 ( w )  and 11 ( 6 )  which correspond to the cases in quadrants I11 and I1 of figure 10 (cf. 
cases 111- and IX- of figure 8 in Dangelmayr 6 Knobloch 1987). Note, however, that 
these schematic diagrams are grossly simplified. The numerical experiments indicate 
that there are further bifurcations leading to chaotic oscillations with asymmetric 
spatial structure. 

The properties of the travelling waves are broadly consistent with our assertion 
that they only occur where the magnetic pressure is signifi2ant. Solutions of the type 
shown in figures 6 and 7 were only found for F > 0.03 (p < 60). From table 4 the 
travelling waves all showed significant evacuation of regions where the field was 
strong, with reductions of up to  70% in density and local Mach numbers, as defined 
in (4.2), of up to 0.5. We made two further runs, both for case 32F, to investigate 
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whether travelling waves were sensitive to changes in diffusivities. The first, with 
u = 1 instead of u = 0.1, yielded travelling waves with a similar value of N but lower 
kinetic energy. The second, with c = 0.3 instead of 5 = 0.1 and a corresponding 
reduction in Q,  led to  a standing wave solution. 

As pointed out in $ 5 ,  th? phase velocity v of the waves is relatively low. The results 
in table 4 suggest that if /3 is fixed v tends to  a limit ij as 2 is increased. In  this limit 
C increases with increasing F though it remains significantly smaller than either the 
sound speed vs or the Alfv6n speed vA. For our reference atmosphere vs = (yz)i so 
that 0.53 < us < 1.39 and Gs x 1.05. I n  figure 9(b )  we plot the velocity 5 of the 
travelling waves against the Alfvdn speed GA = &is. The curve is roughly consistent 
with a linear relationship of the form i7 x 0.6GA, though its slope decreases with 
increasing 6A. 

In the Boussinesq limit the velocity of undamped travelling waves is given by 
(5.2). It can be shown that the velocity of travelling waves in Boussinesq 
magnetoconvection, a t  the oscillatory bifurcation where they are marginally stable, 
is given by the same expression, v = khvA, provided (T, c Q 1.  For h = 1 travelling 
waves therefore have st velocity v = +A. Note that the product zi7 = A, from (5.2) and 
(6.1) : the time taken by a travelling wave to cross the domain is equal to the period 
of a standing wave, which is just the time taken for a disturbance to traverse twice 
the layer depth (a full wavelength) in the vertical direction. 

The fact that  travelling waves in compressible magnetoconvection have approxi- 
mately the same velocity as that given by (5 .2)  for 32 2 /3 2 6 provides further 
support for our assumption that they are essentially slow magnetoacoustic waves. 
On the other hand, their detailed structure is dominated by regions of strong field, 
where magnetic pressure is significant. From table 4, the peak value of the magnetic 
pressure 2 0.3 in all cases where travelling waves are stable. In  the nonlinear 
regime compressible effects not only lead to a preference for travelling waves but also 
determine their spatial structure. 

7. Mixed-mode solutions ( A  = 2) 
In this section we discuss the behaviour of solutions with h = 2 in that region of 

the (p, R)-plane where standing wave and travelling wave solutiyns %re expected to 
exist. For a given value o,f R $he Hopf bifurcation occurs a t  /3 = /Yo) and steady 
solutions exist only for /3 > We shall study the differeqt types ofAtime- 
<epel;ldent behaviour found as I? is increased for a fixed value of /3 such that Pmin > 
p 2 /3(O). As we saw in $4, symmetrical standing waves yi th  two rolls are stable 
immediately above the Hopf bifurcation at R = R ( O ) .  For /3 sufficiently small and & 
sufficiently large there is, however, a transition to travelling waves with four rolls in 
the domain. This involves both a change of scale and a change in the form of the 
solution. In  what follows we shall try to idcntify the bifurcations that are involved. 

We focus our attention on runs with /3 = 8. When 2 x 2&O) the fundamental 
standing wave solution is still stable. The solution for case 8B, illustrated in figures 
4 and 5 ( b ) ,  is strictly periodic in time with period 7 and possesses two important 
symmetries. At any instant the solution is mirror-symmetric about a plane x = xo 
(where xo depends on the initial conditions only) and, since i t  is periodic in x, about 
the plane x = x,,++h. There is also a translational symmetry 
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FIGURE 13 (a). For caption see facing page. 
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FIGURE 13. Mixed-mode travelling wave solutions for case 8C. (a) Velocity streaklines and ( b )  
magnetic field lines at  equally spaced intervals. The waves propagate towards the right, with 
maximum amplitude around z = 0.77A. 
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corresponding to displacement by half a period in space and time. (Symmetry 
between upward and downward plumes is absent in a stratified layer.) 

There is also a branch of travelling wave solutions that emerges from the 
bifurcation a t  R ( O )  but solutions on this branch apparently remain unstable for 
R ( O )  < R 5 2R(O). The waves travel to the right or left without change of form at a 
speed v and therefore violate the mirror symmetry of the standing wave solutions. 
The travelling wave solutions repeat themselves exactly after an interval T = h /v  
and possess the symmetry (2, t )  + (xf wt,, t + to )  for any to ; in particular they preserve 
the translational symmetry (7.1) for to = ~. 

In  addition to these pure solutions with two rolls in the box there are pure four- 
roll solutions for R sufficiently large : these are just the standing wave and travelling 
wave solutions discussed in $6. The pure two-roll solutions lose symmetry a t  
bifurcations giving rise to branches of mixed-mode solutions linking the branches of 
pure two-roll and four-roll solutions. Mixed-mode oscillations appear in Boussinesq 
magnetoconvection with mirror symmetry imposed at xo = 0 (Weiss 1981 b )  and the 
relationship between the different branches has been investigated in some detail 
(Nagata, Proctor & Weiss 1989). The translational symmetry (7.1) is broken when 
mixed-mode solutions bifurcate from pure two-roll solutions in the Boussinesq 
approximation. In our problem mirror symmetry may also be broken and travelling 
waves can appear. 

A run for case 8C was started by slightly perturbing the static solution and it 
initially developed into symmetrical oscillations with a period r x 5.6 and peak 
values of E and N significantly higher than those for case 8B. This standing wave 
solution proved unstable and there was a gradual transition (by time t x 800) to an 
almost periodic solution for which both mirror symmetry and translational symmetry 
are broken. Time traces for this solution are displayed in figure 12(a). Comparing 
them with those for case 8B in figure 5 (b )  we note that the peak values of E ,  N ,  B,,, 
and M,, are all lower for case 8C although the Rayleigh number has been doubled. 
The new solution varies with a period 7 x 6.2 and successive half-cycles are quite 
different. The kinetic energy varies in the range 33 2 E 2 7 ,  without dropping to 
zero, suggesting the presence of a modulated travelling wave. Streaklines and 
magnetic field lines are illustrated in figure 13. Motion is dominated by a single roll 
which reverses its sense of motion and the solution apparently repeats almost exactly 
after an interval r has elapsed. This dominant eddy is centred a t  x x 0.77A and it 
distorts the magnetic field in the region 0.5 < x/h < 1.1 ; a second, weaker roll 
appears in a region of stronger field and for 0.1 < x/A < 0.5 the field lines are only 
slightly distorted by the motion. In the course of the oscillation the rolls move slowly 
to the right in figure 13, travelling approximately one wavelength during the 
period 7.  Moreover, they have a slightly triangular structure with prograde velocity 
at the vertices, which point alternately upwards and downwards. Apparently we have 
a two-roll travelling wave solution, modulated in both space and time. To a first 
approximation, the modulation remains fixed in space and the kinetic energy varies 
as the rolls drift by, with unequal maxima since clockwise and anticlockwise rolls are 
not equivalent. 

Closer inspection of these solutions reveals that they are not periodic. For example, 
a trajectory plotted in the phase plane with coordinates w(0, +, t )  and B,(O, &, t )  is not 
attracted to a limit cycle but instead describes a torus. Over a long interval the 
position of the dominant eddy drifts gradually to the left across the box, with a 
velocity 6v x 6.2 x lo-*, so that the spatial modulation pattern moves a distance h 
in a time h/6v x 5207. Apparently this solution is quasi-periodic, with one frequency 
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associated with the rate a t  which travelling waves cross the box and a very much 
smaller frequency of modulation. 

This pattern can be ascribed to interference between travelling waves with 
wavelengths h and +A. In  the Boussinesq limit these waves travel with velocities v 
and ~ respectively in the linear regime. Hence we might consider a combination of 
the form 

(7.2) 

u = [{1+2ecosa(x+Svt)}sina(x-vt)+ssina(v+Sv)t] COSKZ. (7.3) 

u (x ,  z ,  t )  = [sin a(x-vt)  + €sin 2a{x-+(v- Sv) t } ]  cosm, 

where a = 2n /h ,  v = +hvA and Sv -4 v. This can be written as 

Thus two waves travelling in the same direction give rise to a modulated solution 
with period 7 x hlv. The solution would be periodic if the four-roll wave travelled 
a t  exactly half the speed of the two-roll wave and the entire pattern would then 
repeat after an interval r = 2/v,. For a compressible layer with p = 8 the Alfvkn 
speed 8, x 0.41 and the corresponding period r x 4.9, from (6.1). Pure four-roll 
travelling waves have a velocity v x 0.2h, while standing waves have a period r x 5.5 
(cf. tables 2 4 ) .  Apparently the ratio of the two wave velocities remains close to 
0.5 in the nonlinear regime even when the layer is stratified. 

A further increase in R leads to a different type of solution. Case 8D provides an 
example of a strictly periodic solution which retains mirror symmetry though the 
translational symmetry (7.1) has been lost. Figure 14(a, b )  shows streaklines a t  two 
stages when the kinetic energy is a maximum, separated by half a period. The two 
rolls are separated by symmetry planes a t  x = zo, xo ++Ah, where xo x 0.39h. I n  the 
neighbourhood of x = xo the magnetic field is strongly distorted by the motion but 
convection is inhibited around x = xo++h, where the field is relatively undistorted, 
as shown by the field lines when B,,, is a maximum, plotted in figure 14(c, d ) .  The 
oscillation has a period r x 5.8 and alternate half-cycles are quite different (since 
upward and downward motion a t  x = xo are not equivalent). I n  the time traces in 
figure 12 ( b )  alternate peaks in N ,  M,,,, B,,, and pmin have quite different shapes, 
though the kinetic energy E shows only slight asymmetry. The amplitude of the 
oscillations is somewhat greater than for case 8B and much greater than for case 8C 
in figure 12(a). This solution is a compressible analogue of the asymmetric 
oscillations found in Boussinesq magnetoconvection with R = lo4 and t~ = 1. In  
those results a strong flux sheet was formed between each pair of rolls and the motion 
and field became increasingly segregated as Q decreased (cf. figure 6 of Weiss 1981 b).  
Here further increases of 8 lead to pure four-roll travelling wave solutions for cases 
8E and 8F as we saw in $$5 and 6. 

The mirror-symmetric oscillation for case 8D presumably lies on a branch of 
periodic mixed-mode solutions that bifurcates from the branch of pure two-roll 
standing wave solutions. In the Boussinesq limit the period 7 = 2/v, of linear 
standing waves is independent of the aspect ratio h and figure 9 ( a )  shows that this 
remains a good approximation for slow magnetoacoustic oscillations with p = 8. 
Thus the asymmetric periodic oscillations in figure 14 can be regarded as a 
combination of pure two-roll and pure four-roll standing wave solutions which have 
the same period and are locked in phase. 

When p = 6 the transition from a two-roll standing wave to a four-roll travelling 
wave is more straightforward. Case 6B yields a stable symmetric oscillatory solution 
which gives way to mixed-mode travelling waves as R is increased. In  case 6C small 
perturbations developed into a symmetrical standing wave (r x 5.0) which became 



F
IG

U
R

E
 

14
 

M
ix

ed
-m

od
e 

pe
ri

od
ic

 b
eh

av
io

u
r 

fo
r 

ca
se

 8
D

. 
(u

, 6
) 

V
el

oc
it

y 
st

re
ak

li
ne

s 
w

he
n 

E
 i

s 
n

ea
r 

a 
m

ax
im

u
m

 a
n

d
 (

c.
 d

)
 m

ag
ne

ti
c 

fi
el

d 
li

ne
s 

w
he

n 
B

,,,
 

is
 n

ea
r 

a 
m

ax
im

u
m

. T
h

is
 s

ol
ut

io
n 

re
ta

in
s 

m
ir

ro
r 

sy
m

m
et

ry
 a

b
o

u
t t

h
e 

pl
an

es
 x
/h

 =
 0

.3
9

.0
.8

9
. (

a
, 6

) a
n

d
 (

c,
 d

)
 ar

e 
se

p
ar

at
ed

 
b

y
 h

al
f 

a 
pe

ri
od

. 



Nonlinear compressible magnetoconvection. Part 1 62 1 

N 

(4 

0.0828 A ,. 
0.0826 1 i\ 
0.0824 

,. 

700 710 710 730 

0.0818 
0.0816 
0.0814 

690 

i 
1.930 
1.925 
1.920 
1.915 
1.910 
1.905 
1.909 
1.895 

690 700 710 720 730 

1.930 
1.925 
1.920 
1.915 
1.910 
1.905 
1.909 
1.895 7 

690 700 710 720 730 

N A N 
0.16 

E 0.08 
0.06 
0.04 
0.02 

o ~ . . . . l . . . , I . . . . I , . , , ,  
1750 1800 1850 1900 1950 

N i:8 
1.5 
1 .o 
0 . 5 : .  , , 8 1 .  7 8 1 - .  ' 1 . .  1 1 

1750 1800 1850 1900 1950 

FIGURE 15. Modulated waves ( A  = 2). (a) Variation with time of E and N for the modulated 
travelling wave solution in case 6D. ( b )  As (a), showing quasi-periodic behaviour for case 32E. 

unstable and was superseded by an almost periodic solution (7 x 5.3) lacking both 
mirror and translational symmetries. As in case 8C motion is dominated by a single 
eddy that reverses and closer inspection reveals an asymmetrically modulated two- 
roll pattern that drifts with an average velocity v % A/?. The rolls have a clear 
triangular structure with prograde velocity at the upward- and downward-pointing 
vertices and the pattern again corresponds to a mixed-mode solution involving two- 
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FIGURE 16. Quasi-periodic spatially modulated behaviour. Streaklines for case 32D showing 
different phases with (a) three rolls and ( b )  two rolls present in the box. 

roll and four-roll travelling waves. The spatial modulation pattern drifts very slowly, 
with a velocity Sv x 2 x indicating that the velocity of travelling waves with 
A = 1 is almost exactly half that of waves with h = 2. 

As R is increased a smaller horizontal scale is preferred. The solution for case 6D 
is a four-roll travelling wave, slightly modulated in space and time. Figure 15(a) 
shows time traces of the kinetic energy and the Nusselt number. They oscillate 
periodically with a period r,  x 5.6 and 1.904 < N < 1.935 while E varies by about 
1.6%. I n  an interval 7, the waves travel a distance wr, x 0.59h, so the spatial 
pattern does not repeat after each period of the modulation. I n  this solution the rolls 
have a triangular shape similar to that in figure 6 but their amplitude is modulated 
with a wavelength h and the modulation pattern is not fixed in space. Finally, a 
further doubling of R leads to pure four-roll travellingAwaves for case 6E. 

No steady travelling wave”so1utions were found for /3 = 32, even for runs started 
from travelling waves with /3 = 8. On the other hand there was a variety of quasi- 
periodic and aperiodic behaviour. Case 32C again yielded transient symmetric 
standing waves which lost stability and gradually developed into apparently quasi- 
periodic asymmetric oscillations. In  this solution there are two counter-rotating rolls, 
one of which is usually more prominent than the other. Although there is no plane 
of symmetry between the rolls they reverse cyclically without drifting horizontally 
across the box. The mean cycle period 7 and the modulation period r,  appear 
incommensurate, with 7, x 2.47. The asymmetric spatial modulation suggests that 
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R 

FIGURE 17. Schematic bifurcation diagram forb = 6. Solution branches are sketched in the (i7,R)- 
plane, where U is the r.m.8. velocity. Full lines indicate stable solutions and broken lines unstable 
solutions. The different branches of pure two- and four-roll standing (S), travelling (T) and 
modulated (M) waves are labelled, together with mixed-mode quasi-periodic ( 2 4  QP) solution 
branches. All bifurcations are assumed to be supercritical. 

this is a mixed-mode quasi-periodic solution involving two-roll and four-roll standing 
waves. 

Increasing R led to more complicated quasi-periodic solutions. In case 32D there 
are sometimes two asymmetric rolls, more often three and occasionally four. Figure 16 
shows two extreme cases: in figure 16(a) there are three rolls with a triangular 
structure reminiscent of travelling waves but in figure 16(b)  the two rolls are more 
nearly square as in standing wave solutions. Apparently the four-roll component is 
drifting relative to the oscillatory two-roll component, suggesting that this mixed- 
mode solution involves a two-roll standing wave and a four-roll travelling wave 
which are not locked in phase. 

Case 32E displays more striking quasi-periodic modulation, as indicated by the 
time traces of E and N in figure 15(b) .  The velocity pattern reveals two prominent 
rolls, reversing without mirror symmetry and showing considerable structure when 
the kinetic energy is low. Its  structure again suggests that there is a two-roll standing 
wave modulated by a four-roll travelling wave component. 

Finally, case 32F yielded aperiodically modulated behaviour with signs of 
intermittency. By this value of R the static solution is unstable to rolls with A = 2, 
1,g  and is about to become unstable for h = i, so more complicated mixed-mode 
oscillations may arise. Solutions for cases 128C and 128E are also aperiodic, though 
they are probably related to a branch of mixed-mode solutions that bifurcates from 
the unstable steady branch. 

This survey has revealed a variety of time-dependent mixed-mode solutions, 
ipvolving standing waves and travelling waves with wavelengths h and ;A. For 
/3 < 8 there is a transition from a pure twp-roll standing wave solution to a pure 
four-roll travelling wave solution but for /3 2 32 the transition is from a standing 
wave to aperiodic mixed-mode oscillations. Indeed, aperiodic solutions appear even 
in the Boussinesq approximation at large R (Weiss 1981~). 
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The results for p = 6 are consistent with the schematic bifurcation structure 
depicted in figure 17. Two-roll standing wave and travelling wave solutions bifurcate 
from the static solution a t  R x 3500; initially the standing wave solution is stable 
but stability is transferred to travelling waves by a branch of two-roll modulated 
waves. The travelling wave solution becomes unstable to four-roll perturbations and 
a branch of mixed-mode travelling wave solutions emerges from a Hopf bifurcation. 
These solutions are quasi-periodic and develop into modulated four-roll travelling 
waves, on a branch that bifurcates from that of pure travelling wave solutions 
around R x 40000. For simplicity this picture assumes a minimal number of 
!ifurcations, all of which are supposed to be supercritical. The behaviour found for 
p = 8,32 involves more solution branches and the bifurcation structure is 
correspondingly more intricate. 

One curious feature of the results for p = 6 and /3 = 8 is the appearance of solutions 
that seem a t  first sight to be periodic but are actually quasi-periodic. In -the 
Boussinesq approximation slow magnetoacoustic waves have a velocity ihv, relative 
to the preferred inertial frame in which the total momentum vanishes, so their 
frequency w = nuA is independent of A. One might naively expect phase-locking in 
the nonlinear regime but since the system is invariant with respect to displacements 
in the x-direction the phase of the two-roll wave is an ignorable order parameter. 
Hence there is no frequency entrainment (cf. Rand 1982). On the other hand, both 
two-roll and four-roll waves have very similar frequencies, which change only 
slightly in the nonlinear regime, so the velocity difference Sv in (7.2) remains small. 
Moreove:, 6v is less when /3 = 6, close to the stability boundary in figure 1 ( b ) ,  than 
it is for /3 = 8. 

8. Conclusion 
In  this paper we have tried to explore the connections between two-dimensional 

standing wave and travelling wave solutions in spatially periodic boxes with aspect 
ratios h = 1,2. When convection first sets in standing wave solutions are preferred 
and two-roll solutions with h = 2 are stable to four-roll perturbations. For p > 32 we 
found no travelling wave solutions though time-dependent solutions showed 
complicated spatial and temporal modulation at”  high Rayleigh numbers. Stable 
travelling wave solutions with h = 1 exist for 32 2 p 2 6 and I? 2 16000. When A = 2 
the two-roll standing wave solutions become unstable fqr 8 2 8000 and stability is 
transferred to four-roll travelling wave solutions when p < 8. This process involves 
mixed-mode travelling wave solutions and requires a complicated sequence of 
bifurcations. 

is 
sufficiently small and R sufficiently large. This is an essentially compressible effect, 
though the waves travel as slow magnetoacoustic trapped modes even in the 
nonlinear regime. We have discussed some mathematical aspects of the associated 
bifurcation structure but it is also important to  establish the physical mechanisms 
that lead to the appearance of stable travelling waves. 

Travelling waves exist because the boundary conditions a t  z = 0 , l  provide a 
waveguide. In  the Boussinesq regime slow magnetoacoustic waves are reflected at  
the upper and lower boundaries and interfere to give waves travelling to left or right 
with a velocity v = ihv,. These waves can in turn combine to yield standing waves 
with a period 7 = 2/v,. Our results show that the velocity and period of travelling 

Our most significant result is that  travelling waves are preferred when 
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wave %nd standing wave solutions are those of slow magnetoacoustic modes even 
when /I is relatively small. 

Linear theory explains the existence of travelling waves but we must turn to 
nonlinear theory in order to discover whether standing waves or travelling waves are 
preferred. In some cases (e.g. where relative rates of diffusion are crucial) this 
question can only be answered by a detailed calculation. In  others we may hope to 
find a criterion based on physical arguments. We might begin by seeking a propulsion 
mechanism. Energy propagates with the group velocity V and for slow magneto- 
acoustic waves in the Boussinesq limit V is parallel to the magnetic field. Thus 
we should expect that travelling waves will be preferred in the presence of an 
imposed horizontal magnetic field, where V = v A 2  (cf. Parker 1984), while standing 
waves will be preferred with a vert'ical field ( Y = vA i). Detailed calculations have 
confirmed that travelling waves are stable in a horizontal field (Knobloch 1986) and 
that standing waves are preferred in a vertical field with h of order unity 
(Dangelmayr & Knobloch 1986). On the other hand, Proctor (1986) found that for 
Q % 1,  when convection first appears with h = O(Q-i)), travelling waves are initially 
stable ; in that regime diffusion is important. I n  other systems the situation is less 
clear. Travelling waves are preferred in thermosolutal or binary convection, while 
standing waves have been found in experiments with a rotating system, but there is 
no obvious criterion based on group velocities since V is perpendicular to the wave 
vector for internal gravity waves and for inertial waves. 

Our discussion of group velocity has so far relie$ on the Boussinesq approximation, 
which is valid only for weak magnetic fields with p % 1. Jn that limit we find standing 
waves, supported entirely by magnetic tension. As p is decreased compressional 
effects become significant and the group velocity acquires a component perpendicular 
to the imposed magnetic field. Thus there exists a possible propulsion mechanism for 
travekling waves when p is of order unity. If the field strength is further increased so 
that p < 1 slow magnetoacoustic waves have a group velocity V = vs 2 and we again 
expect that standing waves will be preferred. Apparently stable travelling waves are 
likely to be found only in the regime where the sound speed and the AlfvBn speed are 
comparable. 

Fast magnetoacoustic waves travel almost isotropically a t  a speed v 2 vs and the 
sound speed GS > 2.254, in our numerical experiments, where travelling waves 
propagate as slow magnetoacoustic waves with v < 0.226,. Nevertheless, pressure 
fluctuations are important in compressible magnetoconvection. In  the nonlinear 
regime convective motion leads to local concentrations of magnetic flux where the 
magnetic pressure P ,  becomes comparable with the ambient gas pressure. In  cases 
where travelling waves were stable P,  reached a peak value in the range 0.30 < 
P,,max < 0.92. The gas pressure rises from 0.17 a t  the top to 0.94 a t  the middle of the 
layer, so large local increases in magnetic pressure cannot be balanced by partial 
evacuation of the flux sheets and consequent reductions ia thermal pressure. As a 
result there is an excess of total pressure l7in regions where the field is strong. Figure 
4(e )  shows that the pressure fluctuations 17' attain local maxima along the jet, which 
coincides with flux concentrations in figure 6. These fluctuations in total pressure 
accelerate the fluid in such a way as to produce travelling waves. We believe 
therefore that pressure fluctuations are responsible both for the transfer of stability 
from standing to travelling waves and for the triangular form of the travelling wave 
solutions. When p is large increases in P, can be bal$nced by reductions in P so that 
17' remains relatively small. For strong fields (with p < 32 and F > 0.05) convective 
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motion leads to pressure fluctuations that can only be balanced by inertial terms in 
the equation of motion. The resulting dynamical interaction leads to low-amplitude 
travelling waves, propagating as slow magnetoacoustic waves at a rate determined 
by the Alfv6n speed based on the mean field strength. 

Standing waves still exist in the nonlinear compressible regime, just as travelling 
waves exist in Boussinesq magnetoconvection. In  oscillatory solutions with mirror 
planes a t  x = xo, xo ++A the balance between pressure fluctuations and inertial terms 
must be very delicate. If the mirror symmetry is broken in such a way that alternate 
rolls are separated by surfaces inclined a t  angles & 0 to the vertical the fluctuations 
n l ( x , z , t )  presumably act to drive a jet along the surfaces so that 0 increases to 
produce a triangular structure, propagating with a speed v z +AV,. This picture 
suggests that pressure fluctuations in the low-/3 regime are responsible both for the 
instability of standing waves and for the spatial form of travelling wave solutions. 
Paradoxically, their velocity remains the same as in the Boussinesq regime. 

Finally we note that this process provides a mechanism for thermal excitation of 
travelling waves in vertical as well as horizontal magnetic fields. This would apply 
to shallow convection zones in stars with strong magnetic fields, where F is large and 
5 is small. Sunspot umbrae are more complicated, since the effective value of 5 
increases with depth owing to ionization, but this mechanism could excite travelling 
waves in sunspot penumbrae. The astrophysical implications of our results will be 
discussed elsewhere. 
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Appendix. The semi-implicit scheme 
In  our simulations of magnetoconvection with small Prandtl numbers, the time 

step of our explicit numerical scheme is controlled by the thermal diffusion time. 
However, the dynamical timescale is much longer, being comparable with the viscous 
diffusion time. Hence it is useful to treat some of the terms explicitly and others 
implicitly. To illustrate the semi-implicit scheme consider this simple advection- 
diffusion equation in one dimension, 

Ut = U, + KU,,. 

Our explicit Lax-Wendroff scheme would solve this equation in two steps. The first 
time step advances the solution using forward differences. If 6t is the time step and 
un is the value of u a t  time step n, then this first step has the form 

(A 1) 

Un f &(U; f KU;!), (A 2) Un+l = 

where the spatial derivatives are represented by centred spatial differences. This 
provisional step has only O(&) accuracy in time. The second step uses these first- 
order-accurate values to advance the solution with centred differences 

Un -!- 26t(Ug+' -k KUgzf') (A 3) Un+2 = 

thus giving O(St2) accuracy. For stability the time step of this explicit scheme is 
limited by both the advective (St, cc i/&) and diffusive (St, cc S X ~ / K )  mesh timescales, 
where 6x is the resolution of the spatial mesh. 
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In our semi-implicit scheme, the first step remains unaltered. However, the 
diffusive term is evaluated in the second step using the Crank-Nicolson method. 
Hence the second step has the form 

un + 26tu,n+l+ KSt(U,nZ + U,nZ,'"). (A 4) Un+z = 

This semi-implicit method assures stability for time steps larger than St, while 
retaining the same second-order accuracy as the Lax-Wendroff scheme. For very 
large time steps the Crank-Nicolson scheme can produce unphysical oscillations 
which possess very little damping. These oscillations must be negligible over any 
natural timescale for the solutions to maintain accuracy. For St % St,, the 
amplification factor for one step is A z 1 -at,/&. If the smallest natural timescale is 
T = N6t then we must have A N  4 1.  In  practice we require St < (O.2TStK)i. 

Applying this scheme to equation (2.4)leiives us with a Helmholtz equation with 
variable coefficients for the temperature, which we solve at  each even time step using 
the method of multiple grids (Brandt 1984). The simplest implementation of this 
method, where Gauss-Seidel relaxation is used a t  each level and linear interpolation 
is used between levels, proved adequate. Our multigrid solver gives solutions 
accurate to O(Sx2) in four V-cycles, each four levels deep, for typical resolution. To 
assure convergence we used ten cycles in our code. 

The resulting semi-implicit code increased the usable time step by more than a 
factor of three while requiring only 6% more CPU time per step. For the range of 
parameters we consider, the Courant condition on wave propagation and advection 
satisfies our accuracy criterion above. The code was tested both against the fully 
explicit version and against growth rates predicted by linear analysis. In  both cases 
it agreed to within acceptable accuracy. 
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