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Two-dimensional compressible convection in a polytropic layer with an imposed
vertical magnetic field is studied in a series of numerical experiments. We consider
a shallow layer, spanning only a fraction of a scale height in density, and increase the
ratio (f7') of the magnetic to the thermal pressure in a regime where convection sets
in at an oscillatory bifurcation. Initially there are stable periodic oscillations
(standing wave solutions). For moderate values of # the only deviations from
Boussinesq behaviour are where the field is locally intense but as § is decreased
magnetic pressure fluctuations become increasingly important. When f is of order
unity at the top of the layer standing waves become unstable at higher Rayleigh
numbers and travelling waves are preferred. This is an essentially compressible effect
in which magnetic pressure plays a crucial role. The associated bifurcation structure
is investigated in some detail.

1. Introduction

Strong magnetic fields inhibit convection at the surfaces of stars with deep
convective envelopes. Isolated flux tubes therefore coincide with cooler, darker
patches and these spots are the most prominent signs of magnetic activity in stars
like the Sun. The existence of sunspots and starspots has motivated detailed studies
of magnetoconvection, mainly within the framework of the Boussinesq approxi-
mation. Investigations of linear and nonlinear behaviour have confirmed that steady
overturning convection is suppressed by strong magnetic fields (Chandrasekhar
1961; Cowling 1976; Proctor & Weiss 1982). However, oscillatory convection may
still occur if the ratio { of the magnetic to the thermal diffusivity is sufficiently small.
This condition is satisfied in sunspot umbrae, where heat transport requires some
form of time-dependent motion. Since stellar atmospheres are compressible it is
important to relax the constraints imposed by the Boussinesq approximation and
recent studies have explored both the effects of stratification and the role of local or
global increases in magnetic pressure (Hughes & Proctor 1988). We shall investigate
fully compressible time-dependent behaviour.

Nonlinear treatments inevitably lead to large-scale numerical computation. Here
there are two possible approaches. The first is to represent stellar processes in as
much detail as possible. Thus Nordlund (1984, 1985) has simulated the interaction
between convection and weak magnetic fields in the solar photosphere, while others
have modelled stellar dynamos in spherical geometry (Moss 1986). The alternative is
to construct idealized fluid dynamical problems that allow us to isolate individual
effects and to investigate them in some detail. We prefer the latter approach. This
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paper demonstrates that by systematically varying the parameters in idealized
numerical experiments we can not only recognize different physical processes but
also identify specific bifurcations which can be related to recent developments in
nonlinear dynamics (Guckenheimer & Holmes 1983). Moreover, our results are
relevant to other examples of double convection, with applications in the laboratory
and the oceans as well as to astrophysics.

In the absence of any dissipation a vertical magnetic field supports fast and slow
magnetoacoustic waves in an unstratified layer. These waves differ not only in phase
speed but also in the relative importance of the compressional and vortical
components of the motion. A necessary condition for the Boussinesq approximation
to be valid is that the ratio £ of thermal pressure to magnetic pressure should be
large ; in that case the fast waves are just sound waves, which travel isotropically,
while slow waves travel along the magnetic field with the Alfvén speed as transverse
hydromagnetic waves. At the other extreme, when f# < 1, fast magnetoacoustic
waves travel isotropically with the Alfvén speed, while slow waves are purely
compressional and propagate along the field at the sound speed (Priest 1982). In a
weakly stratified layer such waves may become unstable in the presence of diffusion.
In the Boussinesq limit slow magnetoacoustic waves are coupled to the thermal
stratification, which can maintain oscillatory (overstable) motion against ohmic and
viscous dissipation provided that { < 1. When £ < 1 the slow waves again become
unstable in a superadiabatic temperature gradient. As f# passes through unity there
is a change in the convective modes from motion across the field to predominantly
vertical motion along the field lines. Behaviour is more complicated for £ of order
unity, when fast and slow magnetoacoustic modes have similar speeds and are
strongly coupled by the stratification (Cattaneo 1984; Hughes & Proctor 1988). The
onset of oscillatory convection in a polytropic atmosphere has been investigated by
Antia & Chitre (1979) and Cattaneo (1984). In this paper we explore behaviour in the
nonlinear regime and show that compressibility leads to the appearance of stable
travelling waves when £ is of order unity.

Two-dimensional compressible convection was studied numerically by Graham
(1975) and Hurlburt, Toomre & Massaguer (1984). More recently, Hurlburt &
Toomre (1988) have investigated nonlinear compressible magnetoconvection in a
series of numerical experiments that has greatly extended our understanding of the
subject. They were mainly concerned with steady convection and focused particularly
on the role of magnetic pressure P, in the nonlinear regime. Even when f# is large, so
that magnetic pressure is unimportant in the absence of convection, convective
eddies will concentrate magnetic flux into sheets where the field is locally intense and
P, becomes comparable with the thermal pressure P. Continuity of total pressure
IT = P+ P, then requires that P should decrease where P, is large; thus flux sheets
are partially evacuated and the density is reduced where the field is strong. Magnetic
buoyancy therefore augments thermal buoyancy at the base of the layer (where
motion converges on a rising plane) but opposes it at the top. Owing to stratification
the latter effect is more important, so magnetic pressure cooperates with magnetic
tension to hinder convection.

Hurlburt & Toomre surveyed a wide range of parameters but only described one
example of oscillatory convection. In this series of papers we shall concentrate on
time-dependent nonlinear magnetoconvection in a fully compressible fluid with { < 1.
We have carried out several sets of numerical experiments using a program similar
to that of Hurlburt & Toomre (1988), which describes two-dimensional convection in
a perfect gas with uniform properties. In these calculations we follow the evolution
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of perturbations to a static polytropic atmosphere with prescribed polytropic index
m and density contrast y. The temperature is fixed at the upper and lower
boundaries, where the vertical component of the velocity, the horizontal component
of the magnetic field and the tangential component of the viscous stress all vanish.
All quantities are assumed to be periodic in the horizontal direction, with wavelength
A. Then we obtain solutions for different values of the Rayleigh number R and the
ratio ,B P/P_, measured at the midpoint of a static layer.

In the first two papers we consider the effects of increasing the magnetic pressure
in a weakly stratified atmosphere. Part 1 is concerned with the regime where
convection sets in at an oscillatory bifurcation, allowing either standing wave or
travelling wave solutions. Part 2 deals with the kinematic regime, where convection
sets in at a stationary bifurcation but hydrodynamic instabilities lead to the
appearance of travelling waves and oscillatory streaming motion, which interacts
with the magnetic field. In the third paper (to be published elsewhere) we turn to a
stratified layer with a density contrast y = 11 and a corresponding increase of { with
depth, which models behaviour in the solar atmosphere.

In this paper, after setting up the problem, we study periodic oscillations in a box
with aspect ratio A = 2. We find that these standing wave solutions, with two square
rolls, give way to travelling wave solutions with four rolls in the box as the Rayleigh
number is increased. In order to explain this transition it is necessary to understand
both the associated bifurcation structure and the dynamical effect of local increases
in magnetic pressure. The interplay between mathematical and physical aspects of
the problem is perhaps the most interesting feature of this study. Some preliminary
results were published by Hurlburt & Weiss (1987) and reproduced by Hughes &
Proctor (1988).

The equations governing two-dimensional compressible magnetoconvection are
set out in the next section and reduced to dimensionless form. Nonlinear solutions are
obtained numerically, using a two-step Lax—Wendroff scheme modified to allow
semi-implicit treatment of diffusive terms. Linear stability is discussed in §3, where
we show that deviations from Boussinesq results are relatively slight. Next, in §4, we
consider standing wave solutions with aspect ratio A = 2, comparing behaviour for
B = 32 (when magnetic pressure fluctuations are only locally important) with that
for ,B 8, when magnetic buoyancy is dominant. In §5 we find that standing waves
become unstable as R is increased for fixed ,B 8 and are replaced by travelling waves
in which magnetic pressure fluctuations play a key role, though the waves travel with
the same speed as slow magnetoacoustic modes in the Boussinesq approximation.
Since the travelling waves appear with half the wavelength of the standing waves we
consider the transition from standing waves to travelling waves with A =1 in §6,
where we establish that stable travelling waves are a compressible phenomenon,
appearing only for ,B < 32. In §7 we explore the more complicated bifurcation
patterns associated with a transition from two-roll standing wave solutions to four-
roll travelling wave solutions when A = 2. Finally we discuss the physical origin of
the travelling wave solutions in the concluding section.

2. The two-dimensional problem
2.1. The governing equations

We shall consider convection in a plane parallel layer of compressible fluid in the
presence of an externally imposed vertical magnetic field. The fluid occupies the
region 0 < z < d, referred to Cartesian axis with the z-axis pointing downwards. We
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suppose that the velocity # and the magnetic field B lie in the (z,z)-plane and that
no quantities vary in the y-direction. The fluid is assumed to be a perfect monatomic
gas with constant heat capacities ¢, and c,, and the shear viscosity g, the thermal
conductivity K, the magnetic diffusivity 5 and the magnetic permeability p, are also
assumed to be constant. The density p(z, 2, t) satisfies the continuity equation

dp

—+V- =0 2.1

L+ (pu) 2.1)

and is related to the pressure P and the temperature T by the equation of state
P=R,pT, (2.2)

where R, is the gas constant. It is helpful to express the remaining equations in
conservative form (Graham 1975; Hurlburt et al. 1984; Hurlburt & Toomre 1988).
The magnetic field is solenoidal, so that

V.-B=0, (2.3)
and satisfies the induction equation, which can be written in the form
OB
—+4+V-L=0 2.
= , (24)
where L is an antisymmetric matrix with elements
dB, OB .
Ly = “131““131*77<a—4—5;f)7 1,j=1,2,3 (2.5)

and (V-L), = 0L,/0x, with (x,,2,, ;) = (z,%,2). The energy equation can also be
written in conservative form as

0 1
a—t[p(cv T+ Lul®>—gz)+ % IB\Z] + V- [plc, T+}ul?—g2)u—KVT+M] =0, (2.6)
0

where the vector M has components

7 0B, OB _
M, = u,rﬂ—(z>3, (a‘xf_a_x: + 45" By(B,u;— Bjuy), (2.7)

and the viscous stress tensor

Qu; Qu; .. Ou
o= |28, ). .
T ”(axfaxi 374 da, 28)
Finally, the equation of motion takes the form
0
apu+V-N=0, (2.9)
where N is a symmetric matrix with elements
B.B B,B
N, = (P+ k ’”) 8y + puyu;— ——L—pga, 8, — 1 (2.10)
2y Ho

and g is the (constant) gravitational acceleration.
The equations (2.1)~(2.10) are solved in the rectangular region {0 <z < Ad,0 <
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z < d} subject to appropriate boundary conditions. We assume that the temperature
is fixed at the upper and lower boundaries, so that

T(x,0) =T, T(xr,d)=T,+AT, 2.11)

where AT is the temperature difference across the layer and 7 is a constant. We
further assert that the total magnetic flux through the region remains constant and
that the horizontal component of the magnetic field vanishes on the upper and lower

boundaries, so that
A

B, =0 at 2z=0,d, f

0

d
B,dx = B,Ad, (2.12)

where B, is the magnitude of the uniform vertical magnetic field in the absence of
convection. In addition we suppose that the vertical velocity and the tangential
components of the viscous stress vanish at the upper and lower boundaries, so that

ou
5, =0 at z2=0,d, (2.13)

w=20,

where u = (u,0,w). Finally, we assume that all variables are periodic in x with period
Ad, so that T(Ad,z,t) = T(0,2,t) etc.

In order to write the equations in dimensionless form we adopt the layer depth d
as our unit of length and transfer the origin to the plane z = — T, d/AT. Our unit of
time is the reduced sonic travel time (d2/R, AT)* and the density is scaled by the
density p, at the top of the layer in the absence of convection. The temperature is
scaled by the temperature difference AT across the layer and the magnetic field by
B,. The dimensionless thermal conductivity is then given by

K

K=——
Cp Py (R y AT)

(2.14)
All variables will henceforth be displayed in dimensionless form, Then (2.2) reduces
to P = pT and (2.10) can be written as

Ny = [P+3FBy B8+ puyu;—FB, B;— (m+ 1) 2,6, — 7y, (2.15)
where the strength of the magnetic field is measured by the dimensionless parameter

B

—_ — 2
=~ R AT o, K*Q (2.16)

(the square of the ratio of the Alfvén speed to the reduced sound speed). Here the
Chandrasekhar number

2 72
=B 2.17)
Ho 147
and the Prandtl numbers
0-=:u‘Cp/K’ €0=7]p00p/K' (218)

measure the ratios of the viscous and magnetic diffusivities to the thermal
diffusivity, while

R*AT—I (2.19)



592 N.E. Hurlburt, M. R. K. Proctor, N. O. Weiss and D. P. Brownjohn

is the polytropic index (see §2.2 below). In (2.5) and (2.8) 3 and w are replaced by
¢, K and oK respectively, while the energy equation (2.6) becomes

i) T . i )
a[l){y—_ﬁlﬂL%M —(m+ 1)2}+§F|Bl ]

+V-[p (YYTTI—}—%luF—(m—}— l)z)u—K’VT+M] =0, (2.20)
where y = ¢, /¢, and

dB; 0B,
oz, Ox;

f] i

M, = —umj+F[§0KBj( )+Bj(Bjui—Biuj)]. (2.21)

These dimensionless equations have to be solved in the domain {0 <x < A,2, <2 <
zo+ 1}, where z, = T,/AT. Thus the state of the system is described by the six
physical parameters m, K, z,, F, o and {,, together with the aspect ratio A.

2.2. The static reference almosphere

The governing equations possess a trivial equilibrium solution describing a static,
stratified layer with a uniform vertical magnetic field and heat transported entirely
by conduction. The atmosphere is then a polytrope with

m m+1
T2 p=(£) o pT (2.22)

m
o %o

where the polytropic index m was defined in (2.19). Hence the ratio of the density at
the base of the layer to that at the top is given by the density contrast

¥ = (Z()'f‘ l)m- 2.23)

20
For an adiabatically stratified layer m = 1/(y—1); we shall consider a monatomic

gas with y = §, which is unstably stratified if m < . The degree of instability may be
measured by the Rayleigh number with a loeal value

_|9(AT—gd/c,)d?| _ Cy—1 e ‘
) = [T(/t/p) (K/cz;p)} = (m+ 1){1 it 1)} R (2.24)

where the quantities in square brackets are dimensional. Another important
quantity is the ratio of the gas pressure to the magnetic pressure (or the thermal to
the magnetic energy density)

2#0P] 9Qpm+1 9,m+1

z) = = = - : 2.25
e =% - = (22
This quantity is inversely proportional to the square of the ratio @ of the Alfvén
speed v, to the sound speed vg given by

1 1

B} (2
D)= || = . .
=] = G 22

Note that the local value of the magnetic Prandtl number is proportional to the
density so that

0 =6 =4(Z)" 2.27)
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It is often convenient to use the properties of the static reference atmosphere to
characterize the state of the system. This is particularly appropriate when
considering linear stability (Spiegel 1964 ; Gough ef al. 1976 ; Cattaneo 1984); it can
then be shown that parameters evaluated in the middle of the layer can most readily
be compared with Boussinesq calculations as y - 1. We therefore define R = R(z,+1),
B = Bzy+3), D = DP(2,+}) and { = {(z,+}) and we use these quantities to describe
the state of the convecting system. In practice many of our solutions have been
obtained by solving the equations using the (unstable) reference atmosphere to
provide initial conditions and introducing small velocity perturbations involving
many lengthscales.

2.3. Numerical methods

Nonlinear numerical solutions are obtained for these two-dimensional flows using a
two-step Lax—Wendroff scheme, modified to include diffusion of vorticity, magnetic
field and heat. The basic approach follows that of Graham (1975). The Lax—Wendroff
algorithm uses equations in a conservative form, much as equations (2.1)—~(2.10) are
written. In particular, the. total mass of the system and the total horizontal
momentum are exactly conserved. Further, since we solve for both components of B
using the induction equation (2.4) in finite-difference form with an antisymmetric
matrix L, the total magnetic flux in the region is also conserved to machine accuracy.
The time advance occurs in two steps and involves the use of two spatially staggered
meshes. Since we are interested in solutions with small Prandtl numbers here, where
the thermal diffusion time is much smaller than any other timescale, we solve the
thermal equation using a semi-implicit scheme as discussed in the Appendix. The
other equations are solved using the explicit Lax—-Wendroff time scheme and thus
Courant conditions based on advection, wave propagation and diffusion must still be
satisfied in the choice of maximum time step. Most of the calculations described in
this paper used a mesh with 40 points in the vertical direction and some results were
verified by doubling the spatial resolution of the mesh. A typical run of 500
dimensionless time units took about 1 h on a Cray-18 computer.

3. Linear stability

In these two papers we shall restrict our attention to a fixed shallow reference
atmosphere with z, =} and a polytropic index m = 0.25. For this atmosphere the
density contrast y ~ 1.63 and the density stratification is therefore relatively
unimportant. In astrophysical terms, the ratio of the layer depth to the density scale
height at the upper boundary is m/z, = 1.5 and the ratio to the pressure scale height
is (m+1)/2, =17.5.

The relative importance of the magnetic pressure is measured by the parameter F,
which is inversely proportional to £. For our choice of parameters § =~ 1.89/F, from
(2.25). In this paper we shall study the effect of increasing the magnetic pressure in
the range 256 = > 6(0.007 < F < 0.32). Now the Boussinesq approximation is
valid only if ' € 1 (so that v, € vg) and 2z, > m+1 (whence it follows that y = 1).
Studies of linear and nonlinear convection in the absence of a magnetic field suggest,
however, that Boussinesq results may remain an adequate approximation for y < 5.
As F is increased from zero the magnetic pressure becomes larger relative to the gas
pressure. In the nonlinear regime regions with strong fields are partially evacuated.
Deviations from Boussinesq behaviour are therefore to be expected as F approaches
unity.
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We first consider bifurcations from the static equilibrium solutions of §2.2 in order
to determine the range of validity of the Boussinesq approximation. In the
Boussinesq limit there is a stationary bifurcation when R = R‘®, where

R® = R, +1n*(A2+4)Q (3.1)

for rolls of width $A while B = n*(A%+4)3/4A* is the bifurcation value in the absence
of a magnetic field. For { < 1 and @ > 7*(A2+4)2¢(1 +0)/A%c(1 —{) instability first
sets in through a Hopf bifurcation at R = R, where

L+ o) A+ 4)
4(1+0o)

R®@ =R0[1+§(1+a'+§)]+ Q (3.2)
(Chandrasekhar 1961; Proctor & Weiss 1982). Thus R oc @ for large ¢ at both
bifureation points.

We want to study the effect of increasing the Rayleigh number without changing
the structure of the reference atmosphere. Thus we keep m and 2, fixed and vary the
heat flux by altering the dimensionless thermal conductivity K; since we are
concerned with oscillatory convection the values of ¢ and §, are held constant. Then
it follows from (2.16) and (3.2) that for @ sufficiently large (¢ > 10*) the value of F
at B = R approaches a constant value of order unity, and the conditions for the
Boussinesq approximation are therefore likely to be violated. Hence one must analyse
the compressible system in order to understand hehaviour at large @. For the linear
calculations described in this section we take § = ¢ = (.1. Figure 1(a) shows the
values of R for the onset of steady (B®) and oscillatory (R®) convection as functions
of the Chandrasekhar number ¢ for an aspect ratio A = 2, calculated with the
program developed by Cattaneo (1984). The broken curves indicate the values
predicted by the Boussinesq expressions (3.1) and (3.2). Note that R® is substantially
greater than B, since { is small and @ is relatively large. Although B® is higher in
the fully compress1ble case than in the Boussinesq limit, the two curves have the
same limiting form.

In the parameter ranges with which we are concerned convection appears as an
oscillatory instability and the Hopf bifurcation is apparently supercritical. At small
Q the values of R predicted by Boussinesq theory agree well with the fully
compressible results. This confirms that oscillatory solutions will be insensitive to the
variations in pressure and density across the layer; any deviations from Boussinesq
behaviour must be caused by the large field strengths as I approaches unity. Such
deviations appear for @ > 10%, where the two curves begin to diverge SLgnlﬁcantly
At first R© rises more slowly for compressible magnetoconvection than in the
Boussinesq limit, suggesting the presence of some other driving mechanism. Then,
for Q > 10*, B increases more rapidly than R : for Q > 10* we find that R oc Q*1%,
while R® oc @ from (3.2). We therefore find that B > R for Q > 10°. Slnce
R© then increases more rapidly than B® it is conceivable that steady convection
may be preferred at very large ¢ for this aspect ratio. We shall not pursue this
possibility here, instead concentrating on the region with @ < 10°.

It is important to realize that R, Q and F cannot be varied independently. From
(2.16), (2.24) and (2.27)

_ Y 8Q (zg+3)™ !
F—(m+1){1 y(m+1)}R . (3.3)
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Ficure 1. (a) Bifurcations from the static state (m = 0.25, y = 1.63, A = 2, { = ¢ = 0.1). The two
full curves show the Rayleigh number R® at the stationary bifurcation and the Rayleigh number
B at the oscillatory bifurcation as functions of the Chandrasekhar number Q. The two broken
curves denote the corresponding values, R and R, in the Boussinesq limit. The dotted diagonal
lines indicate constant values of P, corresponding to ,3 8,32, 128. (b) Bifurcations from the static
state for different aspect ratios. The full curves show R® and R for A = 2 as functions of ¥ (on
the lower axis) or # (on the upper axis). The broken curves show R(e’ and B® for A = 1.

For our choice of parameters

S (- e

from (2.25) and (2.26). In figure 1(a) we show lines of constant ﬂ as expected /2’
decreases (and F increases) when @ is increased for constant R, but F also increases
if R is decreased while @ is held constant. In the Boussinesq limit we can use (3.2) to
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predict the value of R for large Q. If this value is fed into (3.3) we find that F' tends
to a constant value F© at R = R® as Q> oo and that

F© = (m+1){1—7__1(m+1)} HL+0) E+Pm 85
4 (E+0) (4+A% 2

For our choice of parameters we find that F*® = 0.38 (corresponding to /)’ ). This
provides an estimate of the largest value of ¥’ (lowest value of 8) that can be reached
in the convective regime. From (3.5) it follows that the only way of increasing F

significantly is to decrease both ¢ and ¢. In numerical experiments it is inconvenient
to have diffusivities much lower than the values we have chosen. Thus we are unable
to approach the regime with @ ~ 1 where overstable oscillations can appear even in
a stably stratified atmosphere, with m > 1/(y—1) (Cattaneo 1984 ; Hughes & Proctor
1988). Further calculations are therefore needed to determine whether this curious
instability develops into oscillations with significant amplitudes in the nonlinear
regime.

As we have seen, the stability boundaries in figure 1 (a) run roughly parallel to lines
of constant ﬂ for large B. In figure 1(b) we show B© and R® as functions ofﬂ or F)
for the two aspect ratios, A = 1 and A = 2, that will be considered in this paper. The
value of B is always less for A = 2 than for A = 1; in this parameter range we
therefore expect convection to set in with rolls of square cross-section as R is
increased for a box with A = 2. On the other hand, the minimum value of § for the
onset of convection at a given value of R is typically less for A = 1; as F is decreased
for a given value of R (R > 1.4 x 10*) oscillatory convection first sets in as rolls of
width L even in a box with A = 2. Narrow rolls are favoured in a strong magnetic field,
as in the Boussinesq regime. As R is further inereased, we find that the Hopf
bifurcation for rolls with A ={ oceurs at a higher value of F than that for A =1
provided R > 1.4 x 10°. Tt is possible that the - envelope of successive stability curves
asymptotically approaches a fixed value of /)’ as B~ o0 and A 0.

In the Boussinesq approximation (valid only if F < 1 and the density scale height
H is large) the velocity u is assumed to be solenoidal and acoustic modes are therefore
filtered out. Thus fast magnetoacoustic waves are suppressed while slow magneto-
acoustic waves reduce to transverse hydromagnetic waves which are coupled to
convection. For a fully compressible stratified layer in the limit of small ¥ (large f)
the fast magnetoacoustic waves become acoustic-gravity waves. Our reference
atmosphere was chosen so as to minimize the side effects of the unstable stratification.
For a disturbance with wavenumber k these depend on the parameter ¢ = (kH)™?
where H = z/m (Lamb 1932; Priest 1982). Taking k& = = for the fundamental mode,
we find that ¢ ~ 3; at the middle of our reference atmosphere (z = %) and ¢ ~ 0.46 at
the top (z = }). The frequency w of this mode is approx1mately given by o® = k*% =~
11, while the local cut-off frequency w, satisfies w2 = ym(m+2)/4z< 14 (Gough
1989). Thus w > w, throughout the layer and so we are justified in regarding fast
magnetoacoustic waves as ordinary sound waves in this limit. Slow magnetoacoustic
waves correspond to disturbances travelling along the field at the Alfvén speed and
they are coupled to convection, giving rise to the oscillatory instability that we have
described. As F' is increased and the magnetic pressure becomes significant, fast and
slow magnetoacoustic modes are coupled by the stratification and this interaction
can be subtle when F is of order unity (as mentioned above). In a magnetically
dominated layer, with F > 1, the fast magnetoacoustic waves become magneto-
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gravity waves, travelling almost isotropically with a speed that differs only slightly
from 4,, while the slow magnetoacoustic waves reduce to sound waves, travelling
along the field and modified by the stratification.

4. Nonlinear standing wave solutions (A = 2)

The numerical experiments described in this paper are all for a perfect gas with
¥ =3%and {= o = 0.1 (so that 0.0707 < { < 0.1151). The thermal boundary condi-
tions and the total mass in the layer correspond to a static atmosphere with z, = $and
m = 0.25; thus the temperature increases by a factor (z,+1)/2, = 7 across the layer,
introducing significant non-Boussinesq effects, but there is only a modest density
contrast (y &~ 1.63). From the linear results in the previous sections we might expect
compressibility to be significant for F > 8 x 107%. The majority of our numerical
simulations lie in the parameter range 107 < F < 0.3(128 > f > 6), with 4 x10° <
B <1.28x10°and 5 x 102 < @ < 1.5 x 10, for aspect I‘atIOS/\ =2 and/\ = 1. Figure 2
shows most of the runs that were made, indicating the types of solution found at
different points in the (F, B)- plane. Summaries of these results are presented in
tables 2-4.

In this section we discuss oscillatory magnetoconvection with A = 2 (corresponding
to convective rolls with square cross-section). We shall compare two mildly nonlinear
simulations at different values of # in order to illustrate the effect of increasing the
magnetic pressure. The parameters are defined by reference to figure 2 (a). For each

value of ,[i we determine the value R of the Rayleigh number at the oscillatory
bifurcation; then we increase R by factors of 2, approximately, while holding g
constant. Runs with £, 2R® 4R 8R© 16R 32K are labelled A, B, C, D, E,
F respectively. Thus any run is spemﬁed by the value of ﬂ an integer) and the
appropriate letter, as in table 1 (which includes parameter values for all runs with
A =1 and A = 2). Note that increasing R for fixed ﬂ as in ﬁgure 2) corresponds to
increasing both Rand Qin ﬁgure 1(a). Since F attains a maximum value (F =~ 0.38,
f ~ 5) on the curve R = R in figure 2(a) the values of R/R(") evaluated at fixed
ﬁ’ and at fixed @ are different. For example, case 32B has R =4 x10? and Q ~
1.8 x 103, so that B/R©® ~ 1.8 at fixed @, while case 8B has B = 5.4 x 10 and Q ~
9.6 x 103, so that Ié/ﬁ@ ~ 14 at fixed . Thus it is difficult to provide an
unambiguous estimate of the degree of nonlinearity for runs at different values of g.
From the linear results discussed in the previous section we expect convection to
set in at B = B provided F > 1072 ﬂ < 2000). In the immediate neighbourhood of
this (supercritical) bifurcation there exist nonlinear periodic solutions. We shall first
explore the range of ,6’ over which stable oscillatory (standing wave) solutions can be
found when B = 2R and then discuss two solutions in more detail. Table 2 lists the
propertles of stable periodic solutions for cases 6B, 8B, 32B and 128B. The period 7
increases as ,6’ is decreased and its variation is roughly consistent with a relatlonshlp
of the form 7 = 2/v, ~ 2/® that would hold for undamped hydromagnetic waves in
the Boussinesq approximation. Thus the oscillatory solutions can be regarded as slow
magnetoacoustic standing waves, whose global properties are only slightly modified
by compressibility. The obvious global measure of superadiabatic heat transport is

the Nusselt number
_— d _ d_
v=|en(E) }]1-(F)) 1)
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Froure 2, Location of solutions in the (¥, R)-plane. (a) A = 2: the curves show B and B® as
functions of ¥ (on the lower axis) or § (on the upper axis). Nonlinear solutions are denoted by circles

(standing waves) or squares (travelling waves) and hollow symbols indicate modulated solutions.
(b) As (a), but for A = 1.

evaluated at z = 1; here F is the total energy flux (cf. Hurlburt et al. 1984) and the
dimensionless adiabatic gradient (d7/dz), = (m+1) (y—~1)/y, so that (dT/dz), =1
for the reference atmosphere in this paper. During an oscillation the Nusselt number
varies over the range Ny, < N < N,.. The values of N, are given in table 2 and
Npin % 1 for all the solutions except case 6B (where N, ~ 0.8). The total kinetic
energy E varies over the range 0 < £ < E_,, and E_,, is greatest for case 8B. The



Nonlinear compressible magnetoconvection. Part 1 599

Values of B( x 10%) for cases run

) . Roxi0?

B F @ A B C D E F G

6 03143 04472 3.50 70 140 280 560 @ — -

8 02357 03873 277 54 108 216 432 864 —
16 01179 02739 220 — 88  — — 704 140.08
32 00589 01936  2.02 4.0 80 160 320 640 —
64 00295 01369 193 — 80 160 320 640 —

128 0.0147  0.0968  1.90 4.0 80 160 320 640 -
256 0.0074 00685  1.90 4.0 80 160  — — —

TaBLE 1. Rayleigh numbers for runs in the oscillatory regime with A = 1 or A = 2. For each series
of runs with fixed g (or F') the value of R is successively doubled, starting cloge to the value (labelled
A) of R® for A = 2. These values can be used to calculate Q = 128R)/ 9/)’)

Ca’se T Nmax Ema.x Mma.x Pm, max pmin
6B 5.04 1.36 0.039 0.42 0.37 0.42
8B 5.50 1.35 0.09 0.58 0.53 0.24

32B 10.5 1.43 0.074 0.30 0.45 0.47

1288 25.0 1.16 0.025 0.13 0.20 0.72

TaBLE 2. Unmodulated standing wave solutions with A = 2

table also lists the highest local values M,,,, and P, .., of the Mach number based
on the vertical velocity

= ul/(yT)} (4.2)
and of the magnetic pressure

= 1F|B? 4.3)

during an oscillation, together with the lowest local value pg;, of the density. The
effects of compressibility are most significant in case 8B and deviations from
Boussinesq behaviour have become relatively unimportant for g = 128.

When £ = 256 convection still sets in at a Hopf bifurcation. Case 256B showed
transient oscillatory behaviour followed by a transition to apparently steady
convection with N =~ 1.63 and £ ~ 128. The steady solution persisted for about 50
dimensionless time units before losing stability and was followed by aperiodically
modulated oscillations with asymmetric spatial structure. From studies of Bous-
sinesq magnetoconvection with square rolls at a fixed value of the Rayleigh number
we expect, to find suberitical steady convection for f < f©, where §© ~ 530 is the
value of / at the stationary bifurcation (R® ~ 8000). By analogy with Boussinesq
calculations there should be a branch of unstable steady solutions bifurcating from
f = @ which acquires stability in a saddle-node bifurcation at Brnin < B, s0
that there is a branch of stable steady solutions for all # > B;, (Proctor & Weiss
1982). The Boussinesq results imply that ﬁmm decreases with increasing R, so that
Bmin = 90,68 for R = 6300,10000 respectively, and suggest that ,Bmm tends to a
limit ﬁmm ~ 30) as B> oo (Weiss 19816). The branch of oscillatory solutions that
emerges from the Hopf bifurcation terminates in a heteroclinic bifurcation on the
lower (unstable) portion of the steady branch. The behaviour of oscillatory solutions
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as R is increased for fixed ﬂ should therefore depend on the value of ﬂ for /}
sufficiently small the oscillatory branch will persist for all R while for 530 = ﬂ 2 30
the osciliatory branch will end in a heteroclinic bifurcation and there will be a
transition from time-dependent to steady behaviour. The result for case 256B
indicates that for § = 256 the heteroclinic bifurcation occurs in the range 1900 <
R < 4000 and that the upper branch of steady solutions exists but is unstable to
perturbations that were suppressed in the Boussinesq approximation. Aperiodic,
spatially modulated behaviour was also found in cases 256C, 128C and 128E as well

as for /; > /}‘e); it will be discussed in Part 2.

We shall compare the two cases 32B and 8B, with F = 0.0589 and F = 0.2357
respectively; we expect solutions to resemble those obtained for Boussinesq
magnetoconvection in the former case while the effects of compressibility are
apparent in the latter. Figure 3(a—e) (plate 1) and figure 4(a—) (plate 2) display
standing wave solutions for these two cases at equally spaced instants in time. Since
the oscillations are controlled primarily by the magnetic field their frequencics are
roughly proportional to the Alfvén speed and so the time spanned by a complete
oscillation in figure 3 is roughly four times that for half an oscillation in figure 4. In
the left-hand panels of figures 3 and 4 the velocity field is represented by randomly
placed arrows or streaklines. The length of an arrow is proportional to the local speed
and its direction is everywhere parallel to the instantaneous velocity ; the arrows are
scaled by the same factor in all frames. The colour background indicates the
associated temperature fluctuation

T(x,z,t)y = T(x,2,t)—2 (4.4)

so that the underlying thermal stratification is suppressed. The colour coding follows
the speetrum and is such that blue and violet denote numerically increasing negative
values of 7" while green and red denote increasing positive values of 7". The right-
hand panels display lines of force of the magnetic field superimposed upon the total
density in colour. We recall that the polytropic reference atmosphere has 1 < p(z) <
1.63; here the range of colours from violet through blue and green to red denotes a
range in density from 2 to 0 and the underlying stratification remains visible. Since
the number density of field lines is proportional to the field strength, figure 4 contains
twice as many field lines as figure 3.

Case 32B in figure 3 illustrates how the fluid motions wind up the magnetic field
until it is strong enough to halt and then to reverse them. Thus the field provides a
spring, as in the Boussinesq regime (cf. figures 6 and 7 of Weiss 1981 a). The tempera-
ture fluctuations 7" are well correlated with the vertical velocity w: hot (red) fluid
rises while cold (violet) fluid sinks. The density shows three effects. First there is the
underlying polytropic stratification. Secondly the density fluctuations follow the
temperature fluctuations, with hotter fluid being lighter (red) than its surroundings
as in the Boussinesq approximation. Thirdly there are the effects of compressibility
which appear only locally and principally at the top of the layer. There the density
drops dramatically in regions where the magnetic field is compressed, reaching a
minimum value of 0.45, i.e. less than half the unperturbed value of p(z,). This is a
consequence of the large magnetic pressure produced within the concentrated flux
sheet. Although the magnetic pressure (/) associated with the average field strength
is small compared with the gas pressure P in (2.15), concentration of the field by the
motion generates values of P, that are comparable with P. This holds particularly
in the upper portion of the layer, where the underlying pressure is least. Where the
field is strong the gas pressure P drops in order to maintain a local magneto-
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(e)

FIGURE 3. Nonlinear oscillatory magnetoconvection for an almost Boussinesq system with f=32 and
R=2R“ (case 32B). The left panels show the spatial structure of the velocity streaklines and the
temperature fluctuations T (x,z,¢) at five almost equally spaced instants during a complete oscillation; the
right-hand panels show the corresponding magnetic field lines and the total density p (x,z,t). Cold, heavy
fluid is shown at the violet end of the spectrum and hot, light fluid at the red end. The relative times are
(a) t/r=0, (b) t/T=0.196, (c) t/r=0.397, (@) t/r=0.597, (e) t/r =0.798, where the period 7= 10.19.

HURLBURT ET AL. (Facing p. 600)
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Plate 2
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FIGURE 4. Standing waves in a compressible layer with =8 and R=2R® (case 8B): streaklines,
temperature fluctuations, field lines and density over half a complete oscillation, at times (a) t/r =0,
(b) t/r=0.211, (c) t/r =0.422, where the period T =4.81. (d) The same, but for a travelling wave solution
with [3= 8 and R = 16R® (case 8E). (e) Velocity streaklines and fluctuations in total pressure I7 (x,z,1)
for the travelling wave solution (case 8E) in the left panel and the standing wave solution (case 8B) in the
right panel; low pressure is shown at the violet end of the spectrum and high pressure at the red end.

HURLBURT ET AL.
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hydrostatic equilibrium (cf. Hurlburt & Toomre 1988) and the consequent
reduction of density is achieved by partial evacuation of the flux sheet. The
decreased density in turn leads to a buoyancy force which opposes the descending
motion in regions where the field is swept together by a horizontally converging flow.
Later, as the velocity reverses, the buoyancy accelerates the ascending fluid. Because
the local region of magnetic buoyancy tends to generate motion on its own scale the
reversal first appears as a narrow convective plume within the flux sheet, as seen at
t =~ 0.67 in figure 3(d). Note that magnetic buoyancy assists upward motion at the
lower boundary and resists downward motion at the upper boundary, where it is
more effective. Thus the main dynamical consequence of compressibility is that
magnetic buoyancy produces short bursts of upwelling into the flux sheets as the low
reverses. These vigorous spurts have no analogue in the fully Boussinesq regime.

When the field strength is doubled the oscillations assume a different form. The
magnetic field for case 8B, in figure 4, is relatively less distorted than in figure 3. On
the other hand, magnetic buoyancy is more potent. The velocity and temperature
appear similar in cases 8B and 32B, although smaller-scale motions (with
corresponding temperature fluctuations) are no longer evident in the former case.
However, the density fluctuations (and hence the buoyancy forces) are now
controlled by variations in magnetic pressure rather than by changes in temperature.
Moreover, variations in |B| and 7" have the same horizontal scale in figure 4 and so
magnetic buoyancy drives large-scale mot’ -, rather than the local spurts of figure
3(d). When the field lines are only slightly distorted, as in figure 4(b), the density is
mainly determined by the temperature, so motion is driven by thermal buoyancy. As
the field is modified magnetic buoyancy takes over. In figure 4 (@) thermally induced
variations in density can still be detected but the predominant effect is a reduction
in p where P, is large and a corresponding increase where £, is small. At the base of
the layer thermal and magnetic buoyancy act together; at the top they are opposed.
Since that is where magnetic buoyancy is most powerful, the net effect of
compressibility is that the magnetic pressure assists magnetic tension (which
provides the spring) in opposing any motion. Hence the oscillations have a short
period and low amplitude.

In order to contrast detailed properties of these oscillatory solutions we display
several time series in figure 5(a) and (b) for cases 32B and 8B respectively. Successive
rows show the variation with time of the kinetic energy E (which is almost
sinusoidal), the minimum value of the density p.;,, the peak value of the magnetic
field expressed as an Alfvén speed '

Bma,x = F%B = (/‘LOR* o AT)%B—, (4.5)
where B is the maximum value of |B| (cf. (2.15) and (2.16)), the peak value M,  of

max
the Mach number based on the vertical velocity, and the Nusselt number N evaluated
at z=1.

B, ., for ,é = 32, displayed in figure 5(a), shows a nearly sinusoidal variation with
a period 7 = 10.5, about twice the Alfvénic transit time. At its peak the magnetic
field at the base of the layer is amplified almost fourfold over its average value. The
minimum density follows the maximum field with some significant deviations. At
times of small field amplification p;, changes slowly but near maximal amplification
it varies rapidly ; p,,, reaches its minimum value shortly before B, attains its peak
and then increases to more moderate values. Both M, .. and N possess more
structure: M . rises rapidly to 0.30 as the field begins to relax towards a less
concentrated state and then levels off, while B, ,, is a minimum before dropping to
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0.12 as B,,, increases once more. The jagged peak in M, is caused by magnetic
buoyancy within the flux sheets, which provides an impulse as the field begins to
unwind ; the resulting motion fills the flux sheets and eliminates the extra buoyancy.
Thus a flux sheet is only evacuated for part of its lifetime. Note that the rapid rise
in the vertical velocity is a consequence of density changes caused by pressure
fluctuations. This effect is excluded in Boussinesq magnetoconvection where the
velocity typically reaches a peak when B,  is a minimum (Weiss 1981 a). However,
N reaches its peak just as M, approaches its minimum and B, is beginning to
increase. This confirms the impression from figure 3 that the strong rising flow caused
by magnetic buoyancy within the flux sheet is only a local phenomenon. Indeed,
other global properties of this solution (e.g. the kinetic energy) behave much as in the
Boussinesq limit despite the difference in the detailed structure of the motion.

When /=8 the period 7 =5.49, suggesting that 7oc By' although the two
solutions are very different. The variation of B,,,, in figure 5(b), shows a slight
asymmetry, with the rise time longer than the decay time. The peak value is slightly
greater than that for § = 32 but only corresponds to a doubling of the average field
strength. The minimum density also shows a slight asymmetry and follows B,
more closely than in the previous example (though p_ ;.  precedes B, by a small
phase shift). The lowest value of p.;, is about one quarter of the mean density,
indicating a greater degree of evacuation than before. M . attains a higher peak of
0.59 and both M, and N exhibit more regular variation. The peak value & is only
1.35; the degree of field concentration, the maximum field strength and the Nusselt
number all decrease with increasing F. Finally we note that the slight asymmetries
in the variations of By, M .. and pp.., as well as differences in phase, are necessary
in order to extract energy from magnetic buoyancy forces.

5. Travelling waves in magnetoconvection

When convection first appears at a Hopf bifurcation the complex eigenfunctions
at the bifurcation point have the form u = U(z) expi(ax + wt) etc., where a is the
horizontal wavenumber of the perturbation. In an infinite layer these solutions
correspond to travelling waves, with u oc sin (ax + wt), or to a standing wave, with
u oc sin ax cos wt (for a suitably chosen origin in the (z, {)-plane). In a finite region of
width A the fundamental mode has a = 2n/A and the allowable solutions depend on
the choice of lateral boundary conditions. If the horizontal velocity v = 0 at z = 0,
A (as in most Boussinesq calculations), then only standing waves are allowed; if
periodic boundary conditions are imposed then both travelling wave and standing
wave solutions are permitted. Thus two branches of time-dependent solutions
emerge from the same Hopf bifurcation at B = B and nonlinear effects determine
which branch is preferred. For example, laboratory experiments on convection in a
rotating system show osciilatory behaviour, corresponding to standing waves
(Rossby 1969) while travelling waves have been observed for convection in a two-
component (ethanol-water) mixture (e.g. Walden et al. 1985). In numerical
experiments on two-dimensional thermosolutal convection travelling waves were
first detected by D.R.Moore (private communication) and have since been
investigated in considerable detail (Knobloch et al. 1986; Deane, Knobloch &
Toomre 1987).

The results presented in §4 show that standing wave solutions with B = 28® are
stable for A = 2. If, however, we take case 8B in figure 4 and increase the Rayleigh
number by a factor eight while holding F fixed then the standing waves evolve into

20 FLM 207
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FieUuRE 6. Travelling waves with F = 0.24 and R = 16R (case 8E). (a) Velocity streaklines and
(b) magnetic field lines at equally spaced instants in time, separated by a time interval 6t ~ 1.9. The
wave pattern propagates with a speed v = 0.126 towards the right.
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stable travelling waves. Figure 6 shows the velocity and magnetic field for case 8E
(R = 43200, Q = 38400) at five equally spaced instants in time. There are now four
rolls in the computational domain and the pattern is translated at a uniform velocity
from left to right. Each roll is roughly triangular in cross-section and the rolls with
a clockwise sense of motion point upwards while those with anticlockwise motion
point downwards. (There is an equivalent solution with the rolls oppositely oriented
and the wave travelling to the left.) Rising fluid no longer moves vertically. Instead,
a continuous jet of fluid zigzags from top to bottom of the layer along the peripheries
of the triangular rolls. Within this jet the horizontal velocity is in the same direction
as the wave velocity. Since there is no net momentum in the system the mass flux
in the jet is balanced by oppositely directed motion elsewhere in the layer. The
magnetic field is compressed at the narrower vertices of the rolls but is much weaker
at their bases. In the interior of the layer the field direction is more or less parallel
to the jet though the boundary conditions ensure that u and B are perpendicular at
z = z,,%,+ 1. Since the pattern remains steady in a reference frame moving with the
wave velocity all global measures of the solution are invariant in time. Here N x 2.4,
while P, ..~ 08, M, ~045, p,;, ~#035 so the solution is far from the
Boussinesq regime.

Figure 4 (d) shows the relationship between velocity and temperature fluctuations
(on the left) and magnetic field and total density (on the right) for this travelling
wave solution. Comparison with figure 4 (a—) shows that the mirror symmetry about
planes separating adjacent rolls, which is present in the standing wave solution, is
broken in the travelling wave solution. (Note, however, that the Lagrangian
trajectories of individual fluid elements still conform to a roughly rectangular
pattern as the triangular waves pass by. In contrast, travelling waves in
thermosolutal convection have rolls with trapezoidal cross-sections which become
more marked if individual trajectories are followed.) This loss of symmetry in the
nonlinear regime is associated with the distinction between positive and negative
wave velocities. It is shown most clearly by the prograde velocity in the jet.

The temperature fluctuations are produced by the convective motion. For the
standing wave solution, symmetry requires that the temperature and velocity should
‘maintain the same phase in z, though the temperature lags in time. In the travelling
wave solution the temperature lags behind the velocity pattern as it moves. The
density fluctuations in figure 4(d) are centred on regions of strong field at the upper
and lower boundaries, confirming that the flux sheets are partially evacuated. Once
again the density distribution reflects variations of pressure rather than variations
of temperature.

Pressure variations are important in the dynamics of these travelling waves.
Figure 4 (¢) shows, on the left, streaklines for the travelling wave solution in figure 6
superimposed on the fluctuations in total pressure,

IT'(z,2,t) = P+LF|B?— (2™ /27). (6.1)

The horizontally averaged values of IT" are negative in the interior of the layer and
positive at the boundaries while minima are located at the centres of the rolls. For
fixed z, IT" is a maximum (817’ /0x = 0) on the jet. This contrasts with the behaviour
of standing wave solutions, as illustrated on the right in figure 4(e). The relation
between pressure and velocity varies during an oscillation but the illustration shows
a typical pattern for case 8B. Here the pressure maxima are aligned with rising and
falling plumes, with clear minima where the horizontal speed is greatest.

In case 8E the waves travel with a velocity » = 0.215. At the centre of the layer

20-2
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Ficure 7. Slow magnetoacoustic waves in the Boussinesq approximation. Sketch illustrating the
relationship between the group velocity (parallel to the magnetic field B), the phase velocity vy, of
plane waves travelling at an angle 6 to the field and the velocity v of travelling waves produced by
interference between waves travelling in directions 8,1 —#6 to B.

the sound speed ¥5 = 1.05 and the Alfvén speed 9, = 0.41. We recall that in an
unstratified medium with a uniform vertical magnetic field such that & = v, /v < 1
pure Alfvén waves and slow magnetoacoustic waves can travel vertically at the
Alfvén speed while fast magnetoacoustic waves can travel horizontally with a phase
velocity v = (v +0%)i. Fast waves travelling in the z-direction would be unaffected
by horizontal boundaries; motion would be purely longitudinal and driven by the
enhancement (reduction) of total pressure at condensations (rarefactions). The
actual wave speed is, however, significantly less than the sound speed so the
travelling waves are not examples of fast magnetoacoustic waves.

For @ < 1 the slow magnetoacoustic waves reduce to transverse hydromagnetic
waves, representing disturbances that travel along the field at the Alfvén speed. In
the Boussinesq limit undamped plane hydromagnetic waves travelling at an angle
0 to the vertical magnetic field have a phase velocity vp = v, cos§. Such waves will
be reflected at a horizontal plane and a configuration with boundaries at z = z,,2,+ 1
therefore acts as a waveguide. Two waves of equal amplitude, travelling at angles 6,
7 — 6 to the vertical with wave vectors w(tan 8,0, 4 1) can be combined to produce a
travelling wave with horizontal wavelength A = 2 cot 6, as indicated in figure 7. Then
the wave travels with the speed of the wavefronts, so

v=vp/sinf = v, cotl = jAv,. (5.2)

Although isolated disturbances only travel along the magnetic field the boundary
conditions allow horizontally propagating waves. Moreover the four-roll solutions
that we have found correspond to waves with A =1 and v = v,. In our case the
waves travel with a velocity v = 0.534,, suggesting that they are essentially slow
magnetoacoustic waves and still adequately described within the Boussinesq
approximation. (The relevant small parameter is really @* = 0.15.)

Nevertheless, the correspondence between u and II’ in figure 4(e) shows the
pressure fluctuations are important in the nonlinear regime. For waves driven by
fluctuations in total pressure only, the horizontal component of the equation of
motion takes the form

0 0
Pa [u(x—uot, 2)] = —a[ﬂ’(w-—vt, 2)]. (56.3)
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Hence it follows that II' = pyu. In particular, for fixed 2 the maxima of the pressure
fluctuations and the prograde velocity must coincide. This clearly holds for figure
4(e), where II' is high on the jet. We note, moreover, that since the pressure
fluctuation II" is a maximum at stagnation points on the upper and lower boundaries
II" would attain a minimum where ju| was a maximum for rolls with rectangular
cross-section. With a triangular cross-section it is possible for both I’ and the
prograde velocity to be maximal at the vertices. The appearance of triangular rolls
and the associated jet can therefore be explained if pressure fluctuations are locally
more important than curvature forces in the equation of motion.

Our discussion of travelling waves has so far been related only to the solutions
illustrated in figures 6 and 7, for case 8E. Similar waves are found when the Rayleigh
number is doubled (case 8F) and also when F is increased from 0.24 to 0.31 (case 6E).
We did not, however, find travelling wave solutions for runs with A = 2 and F ~ 0.06
(B = 32). These results all suggest that the travelling waves are a ‘low g’
phenomenon; when f =6 the magnetic pressure is almost equal to the thermal
pressure at the upper boundary. Since they only appear with rolls of width 0.5 the
interaction between standing wave and travelling wave solutions is best explored in
a narrower domain with A = 1.

6. Transition from standing waves to travelling waves (A = 1)

In systems where convection sets in through an oscillatory (or Hopf) bifurcation
the first question to be answered is whether standing waves or travelling waves are
preferred in the neighbourhood of the Hopf bifurcation. The two-dimensional
problem is periodic in # and symmetric with respect to lateral translations and to
reflection in a vertical plane. These are symmetries of the orthogonal group 0(2) and
the Hopf bifurcation with O(2) symmetry is discussed by Golubitsky & Stewart
(1985) and Stewart (1988). The bifurcating solutions have spatial symmetries
corresponding to the groups SO(2) and Z, for travelling waves and standing waves
respectively. Provided that both solution branches bifurcate supercritically, the
branch with greater r.m.s. amplitude (averhged over space and time) is stable and
that with lesser amplitude is unstable (Ruelle 1973; Golubitsky & Stewart 1985;
Knobloch et al. 1986). In the case of thermosolutal convection, where the amplitude
equations are degenerate, travelling waves are always preferred (Bretherton &
Spiegel 1983; Knobloch et al. 1986; Deane et al. 1987).

If the evolution equations are extended by including higher-order terms it becomes
possible to describe secondary bifurcations, giving rise to branches of mixed-mode (or
modulated wave) solutions that allow a transfer of stability from standing waves to
travelling wave or vice versa (Deane et al. 1987). Dangelmayr & Knobloch (1987)
have carried through a more ambitious programme: they analyse the relationship
between standing wave, travelling wave, modulated wave and steady solution
branches by unfolding the degenerate (codimension-two) Bogdanov bifurcation with
0(2) symmetry and assemble thirty allowable bifurcation diagrams.

Although there has been no systematic search for travelling waves in Boussinesq
magnetoconvection, behaviour in the neighbourhood of the oscillatory bifurcation
has been studied for rolls with different aspect ratios. For @ > 1, it follows from (3.2)
that R is a minimum for narrow rolls, with A ~ Q=%: in that limit, travelling waves
are apparently preferred (Proctor 1986). As R is increased wider rolls rapidly
become unstable. A discussion of the codimension-two bifurcation for A = 24/2, in
the limit o,{—0, indicates that standing waves are preferred (Nagata 1986;
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Case 7 Nmax Emax Mmax Pm, max pmin
8C 5.4 1.18 0.007 0.21 0.27 0.70
(8D) 5.3 2.29 0.032 0.50 0.56 0.34
16C 7.2 1.08 0.007 0.18 0.20 0.77
32C 9.9 1.07 0.004 0.13 0.11 0.87
(32D) 8.8 1.98 0.035 0.37 0.50 0.53
64C 14.0 1.07 0.004 0.12 0.08 0.89
64D 12.1 1.69 0.028 0.29 0.39 0.59
128C 21 1.06 0.003 0.12 0.05 0.92
128D 12.2 1.69 0.028 0.29 0.40 0.58
256C 39 1.05 0.003 0.11 0.03 0.93

TasLE 3. Unmodulated standing wave solutions with A = 1. Brackets indicate unstable cases

Ca’se v N E Mmax Pm, max pmin
6D* 0.21 1.91 0.041 0.43 0.7 0.4
6E* 0.223 2.37 0.053 0.49 0.81 0.30
(8C) 0.190 1.13 0.008 0.18 0.275 0.74
8D 0.198 1.86 0.041 0.37 0.661 0.45
8E 0.215 2.39 0.056 0.45 0.852 0.35
8F 0.215 2.71 0.061 0.52 0.92 0.28

16F 0.168 2.80 0.059 0.47 0.91 0.42

(32C) 0.101 1.03 0.002 0.08 0.076 0.92

32D 0.116 1.42 0.019 0.17 0.323 0.71

32E 0.126 1.93 0.031 0.25 0.541 0.61

32F 0.130 2.41 0.038 0.37 0.603 0.57

32F 0.087 2.7 0.012 0.16 0.30 0.56

(e=1)

TaBLE 4. Unmodulated travelling wave solutions with A = 1. Brackets indicate unstable cases;
asterisks indicate cases with A = 2

Dangelmayr & Knobloch 1986). In what follows we shall first describe relevant
numerical experiments on compressible magnetoconvection and then attempt to
relate them to these theoretical results. .

We have obtained solutions for A = 1 with # =8, 32, 64, 128 and 256. For each
value of # we investigate the nature of the preferred time-dependent solution by
increasing K (by factors of two) starting just above the values R at the oscillatory
bifurcation. Figure 2(b) indicates the runs made and the nature of the preferred
solutions; further details are provided in tables 3 and 4. The branches of standing
waves and travelling waves apparently emerge supercritically at R®. In the
neighbourhood of the Hopf bifurcation we expect one of these branches to be stable
and the other to be unstable. The growth rates of the relevant perturbations are,
however, proportional to (R—E) and unstable solutions may survive for a long
time. Certain choices of initial conditions may therefore lead to persistent transient
behaviour; in particular, we find that simple perturbations to a static solution often
develop into nonlinear standing waves even when travelling waves are preferred.

We consider first the runs with # =8, where travelling waves were found at
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R = 4.52R© for case 8E (cf. figure 6). For case 8C (R/R® ~ 1.13) the run, started from
a perturbed static solution, developed into stable standing waves with the properties
listed in table 3. Another run, started from a travelling wave solution (for case 8E),
yielded an almost steady travelling wave with properties listed in table 4. A third
run, started from a linear combination of the previous pair, eventually settled down
to a pure standing wave solution. The same procedure was repeated for case 8D
(R/R ~ 2.26). Again both standing waves and travelling wave solutions were
obtained but the linear combination settled down to a pure travelling wave solution.
Travelling waves were also found for cases 8E and 8F. As expected, the triangular
cross-section of the rolls and the associated jet become more prominent as B is
increased. In the unstable travelling wave solution for case 8C the cross-section
deviates only slightly from a rectangle.

With # = 16 we found a stable standing wave solution for case 16C and a stable
travelling wave solution for case 16F. Case 16G (with R/R‘ ~ 17) exhibited more
complicated behaviour, with a modulated travelling wave solution in which N varied
periodically about its mean value with an amplitude of about 6 % and a modulation
period 7, & 5.25.

Runs for ,6‘ 32 show behaviour similar to that found for ,5‘ 8. For case 32C
(R/R® ~ 1.11) the stable standing wave solution has N, ~ 1.07,E_., ~ 3.4.
Travelling waves have N = 1.034, £ ~ 1.61 and show a slight periodic modulation
with very slowly increasing amplitude, while a combination of the two ends up as a
standing wave. For case 32D it is again possible to generate standing wave or
travelling wave solutions but a combination develops into a travelling wave. Cases
32E and F also yield steady travelling waves.

With ﬂ 64 standing waves seem to remain stable up to B/R® = 2.3 (case 64D)
and a quasi-periodic modulated travelling wave appears in case 64E. The Nusselt
number and the kinetic energy vary cyclically with 1.2 < N <24 and 3< E <35
but are bounded away from their values for the static state. The cyclic variation has
a period 7& 11.8 and is itself modulated with a period 7, = 44. Although the
velocity reverses its direction, there is no symmetry plane between adjacent rolls.
Figure 8 (@) shows streaklines when the kinetic energy is near a local maximum. The
rolls have a slightly triangular structure, with their centres alternately displaced
upward and downward (as in the travelling wave solutions). This modulated wave
seems to be a ‘mixed-mode’ solution associated with the transition from standing
wave to travelling wave solutions. When R is increased, however, no travelling waves
are found. The solution for case 64F (B/R ~ 9.1) is aperiodically modulated and
shows a greater variety of spatial structure, varying from the asymmetrical rolls in
figure 8(b) to the almost symmetrical pattern of figure 8(c).

No travelling waves were found for 8 = 128. At R/R© ~ 1.19 (case 128C) runs
started either by perturbing the static solution or from a travelling wave both
converged on a standing wave solution with period 7~ 21. Case 128D yielded a
quasi-periodic modulated wave with a cycle period 7 = 19 and a modulation period
7., ~ 66. This is apparently a mixed-mode solution of the same type as case 64E.
Cases 128K and 128F both led to aperiodically modulated waves.

Finally, case 256C provided a standing wave with a longer period (7 ~ 39). From
figure 1(b) the stationary bifurcation occurs at ﬂ(e) ~ 370 for R = 8000 and there is
no longer an oscillatory bifurcation beyond the codimension-two bifurcation at ,5‘ =
430. Indeed, a run at ,3 = 512, R = 8000 showed a solution whose amphtude grew
monotonically from an initial perturbation until it saturated to give a transient
steady solution which subsequently lost stability and was followed by periodic
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(a)

®

FicurE 8. Quasi-periodic and aperiodic modulated waves (A = 1). (a) Streaklines for quasi-periodic
mixed-mode solution when the kinetic energy is large (case 64E). (b, ¢) Symmetry breaking in the
aperiodic solution for case 64F.

oscillations that are qualitatively different from those described here. This behaviour
(which is absent for £ < 256) will be discussed in Part 2.

From these numerical experiments it is clear that stable standing wave solutions
exist for R =~ 2R over the whole range 256 > £ > 8. The period 7 of these solutions
is plotted logarithmically against £ in figure 9(a). For 16 < § < 128 these results are
roughly consistent with a relationship of the form

2 2 . | 1

="~ = ~F H
= 2D =) (6.1)
which would hold for undamped standing waves in the Boussinesq approximation.
Moreover this expression for 7 is independent of the aspect ratio A and figure 9(a)
confirms that the periods for A =1 and A = 2 differ only slightly. For # > 128 the
period 7 increases more rapidly. This is to be expected since there is a codimension-
two bifurcation at £ = 430, where R = R{®. At such a degenerate bifurcation there
are two zero eigenvalues, so the period of the oscillations must become infinite. Over
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Fiqure 9. Standing waves and travelling waves (A =1). (a) Period 7 of standing waves as a
function of f; circles and squares indicate results for A = 1,2 respectively. (b) Velocity & of
travelling waves as a function of the Alfvén speed ¥,.

the range ﬂ = 16 the periodic oscillations are adequately described by the Boussinesq
model; it is only for § < 8 that compressional effects raise the period 7 above the
value given by (6.1).

In the numerical experiments travelling wave solutions were always unstable for
R sufficiently close to R©. The travelling waves acquired stability as R was increased
for ﬂ < 32. We can describe such transitions by normal form equations that are
generically valid in the neighbourhood of the initial bifurcation and this description
will remain qualitatively correct over a finite range as the parameters are varied
(Guckenheimer & Holmes 1983). In the neighbourhood of the Hopf bifurcation the
interaction between weakly nonlinear travelling waves and two-roll standing waves
can be modelled by the simplified normal form equations

b2l r)-ad-bdly

(6.2)
Py = ro[A— (ri+75) —ari—bri],

where r,,7, are the amplitudes of travelling waves propagating to the left and right
respectively, the parameter A oc (R —R) and a, b are real constants with a? < 1 (cf.
Deane et al. 1987). The system (6.2) possesses a trivial solution r, = r, = 0 which is
unstable for A > 0, together with four non-trivial steady solutions: r, = 0,72 = A and
r, = 0,72 = A (travelling waves), r? = r2 (standing wave) and 72+ 72 = —a/b (2 + 1%,
a/b < 0, modulated wave). Figure 10 shows bifurcation diagrams for the system (6.2)
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1

Figure 10. Bifurcation diagrams for standing waves and travelling waves in the (a, b)-parameter
plane for the system (6.2). Each diagram shows the amplitude |4| plotted against the control
parameter A for standing wave (SW), travelling wave (TW) and modulated wave (MW) solutions.
Full lines indicate stable solutions and broken lines indicate unstable solutions.

in different quadrants of the (a,b)-plane with the total amplitude 4 = (#247r2)
plotted against A. In the neighbourhood of the bifurcation at A = 0, standing waves
are stable if @ < 0 and travelling waves are stable if @ > 0; moreover the solution that
is stable has the greater value of 42 (Knobloch ef al. 1986). Note that 42 oc E_,, for
standing waves while A? oc 2E for travelling waves.

Our results for § = 32 correspond to quadrant 11 of figure 10. For (B—R) small
(case 32C) standing waves are stable and E,_,, /2E ~ 1.06, where £ is the kinetic
energy of the travelling wave solution. In case 32D, stability has been transferred to
the travelling wave solutions so modulated waves must exist for some Rayleigh
numbers in the range 1.11 < B/R© < 2.22. For ,6’ = 8 standing waves are still stable
in the neighbourhood of the Hopf bifurcation but for case 8C we found £, /2E ~
0.48, suggesting that higher-order terms have become significant in the evolution
equations. The reference atmosphere defined in §2.2 is stable for all B if ﬂ < 3. Itis,
however, possible to choose m and z, so that convection occurs for lower values of ﬂ
and there may then be a transition to a regime in which travelling waves are
preferred (corresponding to quadrant I of figure 10). If ﬂ is increased from ﬂ(°’ for
some fixed B > 15000 we expect travelling waves to be stable in the neighbourhood
of the oscillatory bifurcation.

With # = 64 we found a modulated wave solution (case 64D) which apparently did
not develop into a steady travelling wave as R was increased. We suggest that the
results for # = 128 correspond to quadrant III of figure 10, with a ‘stable’ standing
wave solution for all R (the turning pomt might be removed by adding suitable
higher-order terms to (2.3)). Behaviour is, however, made more complicated by
spatial modulation of the standing waves. This involves narrower rolls, corre-
sponding to A =3}, which are not represented in (6.2). That interaction leads to
further bifurcations which we shall i ignore here, though they will be mentioned in §7.

We saw from figure 1(b) that if R is increased from R for fixed £ then the
oscillatory branch and the steady branch can remain separate over the range with

max
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A @

A B

R R®

R

Ficure 11. The relationship between branches of standing wave, travelling wave and steady
solutions as R is increased for fixed . Schematic bifurcation dlagrams showing E? as a function of
E for cases where (a) standing waves (SW) are always stable and (b) standing waves transfer
stability to travelling waves (TW) through a branch of modulated waves (MW). Steady solutions
(SS) are stable for large R. Filled circles and hollow circles denote local and global bifurcations
respectively.

which we are concerned. On the other hand, if B is increased for fixed ¢ then ,6’
increases until, from figure 1(a), R = R® for some value ofﬂ Thus it is appropriate
to consider also the relationship between the branches of travelling wave, standing
wave and steady solutions. By analogy with Boussinesq magnetoconvection with
A =1, we expect the steady branch to bifurcate (subcritically) in the direction of
increasing B (Proctor & Weiss 1982). The standing wave branch terminates in a Hopf
bifurcation from the steady branch, while the travelling wave branch terminates in
a pitchfork bifurcation. The appropriate bifurcation diagrams are sketched in figures
11 (a) and 11 (b) which correspond to the cases in quadrants I1I and II of figure 10 (cf.
cases II1” and IX~ of figure 8 in Dangelmayr & Knobloch 1987). Note, however, that
these schematic diagrams are grossly simplified. The numerical experiments indicate
that there are further bifurcations leading to chaotic oscillations with asymmetric
spatial structure.

The properties of the travelling waves are broadly consistent with our assertion
that they only occur where the magnetic pressure is significant. Solutions of the type
shown in figures 6 and 7 were only found for F > 0.03 (# < 60). From table 4 the
travelling waves all showed significant evacuation of regions where the field was
strong, with reductions of up to 70 % in density and local Mach numbers, as defined
n (4.2), of up to 0.5. We made two further runs, both for case 32F, to investigate
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whether travelling waves were sensitive to changes in diffusivities. The first, with
o = 1 instead of o = 0.1, yielded travelling waves with a similar value of N but lower
kinetic energy. The second, with { = 0.3 instead of { =0.1 and a corresponding
reduction in @, led to a standing wave solution.

As pointed out in §5, the phase velocity v of the waves is relatively low. The results
in table 4 suggest that 1f,8 is fixed v tends to a limit ¥ as R is increased. In this limit

¥ increases with increasing F' though it remains significantly smaller than either the
sound speed vg or the Alfvén speed v,. For our reference atmosphere vg = (yz)i s
that 0.53 < vy < 1.39 and 95~ 1.05. In ﬁgure 9(b) we plot the velocity ¥ of the
travelling waves against the Alfvén speed 4, = ¢vs The curve is roughly consistent
with a linear relationship of the form ¥ = 0.64,, though its slope decreases with
increasing ¢,.

In the Boussinesq limit the velocity of undamped travelling waves is given by
(6.2). It can be shown that the velocity of travelling waves in Boussinesq
magnetoconvection, at the oscillatory bifurcation where they are marginally stable,
is given by the same expression, v = Av,, provided o,{ < 1. For A = 1 travelling
waves therefore have a velocity v = lv,. Note that the product v7 = A, from (5.2) and
(6.1): the time taken by a travelling wave to cross the domain is equal to the period
of a standing wave, which is just the time taken for a disturbance to traverse twice
the layer depth (a full wavelength) in the vertical direction.

The fact that travelling waves in compressible magnetoconvection have approxi-
mately the same velocity as that given by (5.2) for 32 > £ > 6 provides further
support for our assumption that they are essentially slow magnetoacoustic waves.
On the other hand, their detailed structure is dominated by regions of strong field,
where magnetic pressure is significant. From table 4, the peak value of the magnetic
pressure P ... = 0.3 in all cases where travelling waves are stable. In the nonlinear
regime compressible effects not only lead to a preference for travelling waves but also
determine their spatial structure.

7. Mixed-mode solutions (A = 2)

In this section we discuss the behaviour of solutions with A = 2 in that region of
the (ﬂ R) plane where standing wave and travelling wave solutions are expected to
exist. For a given value of R the Hopf bifurcation occurs at ﬂ ﬂ(‘” and steady
solutions exist only for ﬂ > ﬂmm We shall study the different types of time-
dependent behaviour found as R is increased for a fixed value of ﬂ such that ﬂmm
= ﬂ“” As we saw in §4, symmetrical standing waves with two rolls are stable
immediately above the Hopf bifurcation at R = R, For ﬂ sufficiently small and R
sufficiently large there is, however, a transition to travelling waves with four rolls in
the domain. This involves both a change of scale and a change in the form of the
solution. In what follows we shall try to identify the bifurcations that are involved.

We focus our attention on runs with #= 8. When R = 2R the fundamental
standing wave solution is still stable. The solution for case 8B, illustrated in figures
4 and 5(b), is strictly periodic in time with period 7 and possesses two important
symmetries. At any instant the solution is mirror-symmetric about a plane x = x,
(where x, depends on the initial conditions only) and, since it is periodic in z, about
the plane x = xy+3A. There is also a translational symmetry

(z,t) > (@ +3A, t+47), (7.1)
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(a)

Ficure 13{a). For caption see facing page.
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U

Ficure 13. Mixed-mode travelling wave solutions for case 8C. () Velocity streaklines and (b)

magnetic field lines at equally spaced intervals. The waves propag&te towards the right, with
maximum amplitude around z = 0.77A.

®)
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corresponding to displacement by half a period in space and time. (Symmetry
between upward and downward plumes is absent in a stratified layer.)

There is also a branch of travelling wave solutions that emerges from the
bifurcation at R but solutions on this branch apparently remain unstable for
R© < R < 2R©®. The waves travel to the right or left without change of form at a
speed v and therefore violate the mirror symmetry of the standing wave solutions.
The travelling wave solutions repeat themselves exactly after an interval 7 = A/v
and possess the symmetry (z, t) > (x £ vt,, t +1,) for any ¢,; in particular they preserve
the translational symmetry (7.1) for ¢, = ir.

In addition to these pure solutions with two rolls in the box there are pure four-
roll solutions for R sufficiently large : these are just the standing wave and travelling
wave solutions discussed in §6. The pure two-roll solutions lose symmetry at
bifurcations giving rise to branches of mixed-mode solutions linking the branches of
pure two-roll and four-roll solutions. Mixed-mode oscillations appear in Boussinesq
magnetoconvection with mirror symmetry imposed at x, = 0 (Weiss 1981b) and the
relationship between the different branches has been investigated in some detail
(Nagata, Proctor & Weiss 1989). The translational symmetry (7.1) is broken when
mixed-mode solutions bifurcate from pure two-roll solutions in the Boussinesq
approximation. In our problem mirror symmetry may also be broken and travelling
waves can appear.

A run for case 8C was started by slightly perturbing the static solution and it
initially developed into symmetrical oscillations with a period 7 = 5.6 and peak
values of £ and N significantly higher than those for case 8B. This standing wave
solution proved unstable and there was a gradual transition (by time ¢ & 800) to an
almost periodic solution for which both mirror symmetry and translational symmetry
are broken. Time traces for this solution are displayed in figure 12 (a). Comparing
them with those for case 8B in figure 5(b) we note that the peak values of E, N, B
and M, are all lower for case 8C although the Rayleigh number has been doubled.
The new solution varies with a period 7 & 6.2 and successive half-cycles are quite
different. The kinetic energy varies in the range 33 > E > 7, without dropping to
zero, suggesting the presence of a modulated travelling wave. Streaklines and
magnetic field lines are illustrated in figure 13. Motion is dominated by a single roll
which reverses its sense of motion and the solution apparently repeats almost exactly
after an interval 7 has elapsed. This dominant eddy is centred at x = 0.77A and it
distorts the magnetic field in the region 0.5 < x/A < 1.1; a second, weaker roll
appears in a region of stronger field and for 0.1 < /A < 0.5 the field lines are only
slightly distorted by the motion. In the course of the oscillation the rolls move slowly
to the right in figure 13, travelling approximately one wavelength during the
period 7. Moreover, they have a slightly triangular structure with prograde velocity
at the vertices, which point alternately upwards and downwards. Apparently we have
a two-roll travelling wave solution, modulated in both space and time. To a first
approximation, the modulation remains fixed in space and the kinetic energy varies
as the rolls drift by, with unequal maxima since clockwise and anticlockwise rolls are
not equivalent.

Closer inspection of these solutions reveals that they are not periodic. For example,
a trajectory plotted in the phase plane with coordinates w(0,,¢t) and B,(0, 4, 1) is not
attracted to a limit cycle but instead describes a torus. Over a long interval the
position of the dominant eddy drifts gradually to the left across the box, with a
velocity dv & 6.2 x 1074, so that the spatial modulation pattern moves a distance A
in a time A/dv & 5207. Apparently this solution is quasi-periodic, with one frequency
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associated with the rate at which travelling waves cross the box and a very much
smaller frequency of modulation.

This pattern can be ascribed to interference between travelling waves with
wavelengths A and 3A. In the Boussinesq limit these waves travel with velocities v
and Jv respectively in the linear regime. Hence we might consider a combination of
the form

u(x,z,t) = [sina(x—ot)+esin 2af{x — (v — o) }] cos z, (7.2)

where a = 2n/A, v = }Av, and dv < v. This can be written as
u = [{1 +2ecosa(x+dvt)}sin a(x—vt)+ esina(v + dv) t] cos mz. (7.3)

Thus two waves travelling in the same direction give rise to a modulated solution
with period 7 = A/v. The solution would be periodic if the four-roll wave travelled
at exactly half the speed of the two-roll wave and the entire pattern would then
repeat after an interval 7 = 2/v,. For a compressible layer with ﬂ 8 the Alfvén
speed ¥, ~ 0.41 and the corresponding period 7 ~ 4.9, from (6.1). Pure four-roll
travelling waves have a velocity v & 0.2A, while standing waves have a period 7 = 5.5
(cf. tables 2—4). Apparently the ratio of the two wave velocities remains close to
0.5 in the nonlinear reglme even when the layer is stratified.

A further increase in R leads to a different type of solution. Case 8D provides an
example of a strictly periodic solution which retains mirror symmetry though the
translational symmetry (7.1) has been lost. Figure 14 (a, b) shows streaklines at two
stages when the kinetic energy is a maximum, separated by half a period. The two
rolls are separated by symmetry planes at x = x,, 2,4+ 3A, where x, & 0.39A. In the
neighbourhood of x = x, the magnetic field is strongly distorted by the motion but
convection is inhibited around x = x,+3A, where the field is relatively undistorted,
as shown by the field lines when B, is a maximum, plotted in figure 14(c, d). The
oscillation has a period 7 = 5.8 and alternate half-cycles are quite different (since
upward and downward motion at x = z, are not equivalent). In the time traces in
figure 12 (b) alternate peaks in N, M .., B,.. and p,, have quite different shapes,
though the kinetic energy E shows only slight asymmetry. The amplitude of the
oscillations is somewhat greater than for case 8B and much greater than for case 8C
in figure 12(a). This solution is a compressible analogue of the asymmetric
oscillations found in Boussinesq magnetoconvection with R = 10* and o = 1. In
those results a strong flux sheet was formed between each pair of rolls and the motion
and field became increasingly segregated as @ decreased (cf. figure 6 of Weiss 1981b).
Here further increases of R lead to pure four-roll travelling wave solutions for cases
8E and 8F as we saw in §§5 and 6.

The mirror-symmetric oscillation for case 8D presumably lies on a branch of
periodic mixed-mode solutions that bifurcates from the branch of pure two-roll
standing wave solutions. In the Boussinesq limit the period 7 = 2/v, of linear
standing waves is independent of the aspect ratio A and figure 9(a) shows that this
remains a good approximation for slow magnetoacoustic oscillations with g = 8.
Thus the asymmetric periodic oscillations in figure 14 can be regarded as a
combination of pure two-roll and pure four-roll standing wave solutions which have
the same period and are locked in phase.

When /§ = 6 the transition from a two-roll standing wave to a four-roll travelling
wave is more straightforward. Case 6B yields a stable symmetric oscillatory solution
which gives way to mixed-mode travelling waves as R is increased. In case 6C small
perturbations developed into a symmetrical standing wave (7 &~ 5.0) which became
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riation with time of E and N for the modulated

, showing quasi-periodic behaviour for case 32E.

unstable and was superseded by an almost periodic solution (7 = 5.3) lacking both
mirror and translational symmetries. As in case 8C motion is dominated by a single
eddy that reverses and closer inspection reveals an asymmetrically modulated two-

roll pattern that drifts with an average velocity v

=~ A/7. The rolls have a clear

triangular structure with prograde velocity at the upward- and downward-pointing
vertices and the pattern again corresponds to a mixed-mode solution involving two-
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(a)

®) “F‘R T

Frcure 16. Quasi-periodic spatially modulated behaviour. Streaklines for case 32D showing
different phases with (a) three rolls and (b) two rolls present in the box.

roll and four-roll travelling waves. The spatial modulation pattern drifts very slowly,
with a velocity dv = 2 x 107 indicating that the velocity of travelling waves with
A =1 i8 almost exactly half that of waves with A = 2.

As R is increased a smaller horizontal scale is preferred. The solution for case 6D
is a four-roll travelling wave, slightly modulated in space and time. Figure 15(a)
shows time traces of the kinetic energy and the Nusselt number. They oscillate
periodically with a period 7,, ~ 5.6 and 1.904 < N < 1.935 while £ varies by about
1.6%. In an interval 7, the waves travel a distance vr, &~ 0.59A, so the spatial
pattern does not repeat after each period of the modulation. In this solution the rolls
have a triangular shape similar to that in figure 6 but their amplitude is modulated
with a wavelength A and the modulation pattern is not fixed in space. Finally, a
further doubling of R leads to pure four-roll travelling waves for case 6E.

No steady travelling wave solutions were found for § = 32, even for runs started
from travelling waves with f# = 8. On the other hand there was a variety of quasi-
periodic and aperiodic behaviour. Case 32C again yielded transient symmetric
standing waves which lost stability and gradually developed into apparently quasi-
periodic asymmetric oscillations. In this solution there are two counter-rotating rolls,
one of which is usually more prominent than the other. Although there is no plane
of symmetry between the rolls they reverse cyclically without drifting horizontally
across the box. The mean cycle period 7 and the modulation period 7, appear
incommensurate, with 7., &~ 2.47. The asymmetric spatial modulation suggests that
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Ficurk 17. Schematic bifurcation diagram for ,é = 6. Solution branches are sketched in the (U, B)-
plane, where U is the r.m.s. velocity. Full lines indicate stable solutions and broken lines unstable
solutions. The different branches of pure two- and four-roll standing (8), travelling (T) and
modulated (M) waves are labelled, together with mixed-mode quasi-periodic (2—4 QP) solution
branches. All bifurcations are assumed to be supercritical.

this is a mixed-mode quasi-periodic solution involving two-roll and four-roll standing
waves.

Increasing R led to more complicated quasi-periodic solutions. In case 32D there
are sometimes two asymmetric rolls, more often three and occasionally four. Figure 16
shows two extreme cases: in figure 16(a) there are three rolls with a triangular
structure reminiscent of travelling waves but in figure 16 (5) the two rolls are more
nearly square as in standing wave solutions. Apparently the four-roll component is
drifting relative to the oscillatory two-roll component, suggesting that this mixed-
mode solution involves a two-roll standing wave and a four-roll travelling wave
which are not locked in phase.

Case 32E displays more striking quasi-periodic modulation, as indicated by the
time traces of £ and N in figure 15(b). The velocity pattern reveals two prominent
rolls, reversing without mirror symmetry and showing considerable structure when
the kinetic energy is low. Its structure again suggests that there is a two-roll standing
wave modulated by a four-roll travelling wave component.

Finally, case 32F yielded aperiodically modulated behaviour with signs of
intermittency. By this value of R the static solution is unstable to rolls with A = 2,
1,% and is about to become unstable for A =1, so more complicated mixed-mode
oscillations may arise. Solutions for cases 128C and 128E are also aperiodic, though
they are probably related to a branch of mixed-mode solutions that bifurcates from
the unstable steady branch.

This survey has revealed a variety of time-dependent mixed-mode solutions,
involving standing waves and travelling waves with wavelengths A and jA. For
f < 8 there is a transition from a pure two-roll standing wave solution to a pure
four-roll travelling wave solution but for g = 32 the transition is from a standing
wave to aperiodic mixed-mode oscillations. Indeed, aperiodic solutions appear even
in the Boussinesq approximation at large B (Weiss 1981¢c).
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The results for f = 6 are congistent with the schematic bifurcation structure
depicted in figure 17. Two-roll standing wave and travelling wave solutions bifurcate
from the static solution at B ~ 3500; initially the standing wave solution is stable
but stability is transferred to travelling waves by a branch of two-roll modulated
waves. The travelling wave solution becomes unstable to four-roll perturbations and
a branch of mixed-mode travelling wave solutions emerges from a Hopf bifurcation.
These solutions are quasi-periodic and develop into modulated four-roll travelling
waves, on a branch that bifurcates from that of pure travelling wave solutions
around R ~ 4000C. For simplicity this picture assumes a minimal number of
bifurcations, all of which are supposed to be supercritical. The behaviour found for
f=8,32 involves more solution branches and the bifurcation structure is
correspondingly more intricate.

One curious feature of the results for /)’ 6 and /)’ 8 is the appearance of solutions
that seem at first sight to be periodic but are actually quasi-periodic. In -the
Boussinesq approximation slow magnetoacoustic waves have a velocity iAv, relative
to the preferred inertial frame in which the total momentum vanishes, so their
frequency w = nv, is independent of A. One might naively expect phase-locking in
the nonlinear regime but since the system is invariant with respect to displacements
in the x-direction the phase of the two-roll wave is an ignorable order parameter.
Hence there is no frequency entrainment (cf. Rand 1982). On the other hand, both
two-roll and four-roll waves have very similar frequencies, which change only
slightly in the nonlinear regime, so the velocity difference §v in (7.2) remains small.
Moreover, dv is less when = 6, close to the stability boundary in figure 1(b), than
it is for g = 8.

8. Conclusion

In this paper we have tried to explore the connections between two-dimensional
standing wave and travelling wave solutions in spatially periodic boxes with aspect
ratios A = 1,2. When convection first sets in standing wave solutions are preferred

and two-roll solutions with A = 2 are stable to four-roll perturbations. For £ > 32 we
found no travelling wave solutions though time-dependent solutions showed
complicated spatial and temporal modulation at high Rayleigh numbers. Stable
travelling wave solutions with A = 1 exist for 32 > /)’ > 6and R > 16000. When A = 2
the two-roll standing wave solutions become unstable for R > 8000 and stability is
transferred to four-roll travelling wave solutions when £ < 8. This process involves
mixed-mode travelling wave solutions and requires a complicated sequence of
bifurcations.

Our most significant result is that travelhng waves are preferred when ﬂ is
sufficiently small and R sufficiently large. This is an essentially compressible effect,
though the waves travel as slow magnetoacoustic trapped modes even in the
nonlinear regime. We have discussed some mathematical aspects of the associated
bifurcation structure but it is also important to establish the physical mechanisms
that lead to the appearance of stable travelling waves.

Travelling waves exist because the boundary conditions at z = 0,1 provide a
waveguide. In the Boussinesq regime slow magnetoacoustic waves are reflected at
the upper and lower boundaries and interfere to give waves travelling to left or right
with a velocity v = $Av,. These waves can in turn combine to yield standing waves
with a period 7 = 2/v,. Our results show that the velocity and period of travelling
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wave and standing wave solutions are those of slow magnetoacoustic modes even
when g is relatively small.

Linear theory explains the existence of travelling waves but we must turn to
nonlinear theory in order to discover whether standing waves or travelling waves are
preferred. In some cases (e.g. where relative rates of diffusion are crucial) this
question can only be answered by a detailed calculation. In others we may hope to
find a criterion based on physical arguments. We might begin by seeking a propulsion
mechanism. Energy propagates with the group velocity V and for slow magneto-
acoustic waves in the Boussinesq limit V is parallel to the magnetic field. Thus
we should expect that travelling waves will be preferred in the presence of an
imposed horizontal magnetic field, where V = v, X (cf. Parker 1984), while standing
waves will be preferred with a vertical field (V = v, £). Detailed calculations have
confirmed that travelling waves are stable in a horizontal field (Knobloch 1986) and
that standing waves are preferred in a vertical field with A of order unity
(Dangelmayr & Knobloch 1986). On the other hand, Proctor (1986) found that for
@ > 1, when convection first appears with A = O(Q"%), travelling waves are initially
stable; in that regime diffusion is important. In other systems the situation is less
clear. Travelling waves are preferred in thermosolutal or binary convection, while
standing waves have been found in experiments with a rotating system, but there is
no obvious criterion based on group velocities since V is perpendicular to the wave
vector for internal gravity waves and for inertial waves.

Our discussion of group velocity has so far relied on the Boussinesq approximation,
which is valid only for weak magnetic fields with ﬁ’ > 1. In that limit we find standing
waves, supported entirely by magnetic tension. As ﬁ’ is decreased compressional
effects become significant and the group velocity acquires a component perpendicular
to the imposed magnetic field. Thus there exists a possible propulsion mechanism for
travelling waves when £ is of order unity. If the field strength is further increased so
that # < 1 slow magnetoacoustic waves have a group velocity V = vg £ and we again
expect that standing waves will be preferred. Apparently stable travelling waves are
likely to be found only in the regime where the sound speed and the Alfvén speed are
comparable.

Fast magnetoacoustlc waves travel almost isotropically at a speed v = vy and the
sound speed %> 2.25¢, in our numerical experiments, where travelling waves
propagate as slow magnetoacoustic waves with v < 0.227;. Nevertheless, pressure
fluctuations are important in compressible magnetoconvection. In the nonlinear
regime convective motion leads to local concentrations of magnetic flux where the
magnetic pressure P becomes comparable with the ambient gas pressure. In cases
where travelling waves were stable P, reached a peak value in the range 0.30 <
P max < 0.92. The gas pressure rises from 0.17 at the top to 0.94 at the middle of the
layer, so large local increases in magnetic pressure cannot be balanced by partial
evacuation of the flux sheets and consequent reductions i thermal pressure. As a
result there is an excess of total pressure I7 in regions where the field is strong. Figure
4 (e) shows that the pressure fluctuations IT’ attain local maxima along the jet, which
coincides with flux concentrations in figure 6. These fluctuations in total pressure
accelerate the fluid in such a way as to produce travelling waves. We believe
therefore that pressure fluctuations are responsible both for the transfer of stability
from standing to travelling waves and for the triangular form of the travelling wave
solutions. When £ is large increases in P, can be balanced by reductions in P so that
IT' remains relatively small. For strong fields (with # < 32 and ¥ > 0.05) convective
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motion leads to pressure fluctuations that can only be balanced by inertial terms in
the equation of motion. The resulting dynamical interaction leads to low-amplitude
travelling waves, propagating as slow magnetoacoustic waves at a rate determined
by the Alfvén speed based on the mean field strength.

Standing waves still exist in the nonlinear compressible regime, just as travelling
waves exist in Boussinesq magnetoconvection. In oscillatory solutions with mirror
planes at x = x,, z,+ 1A the balance between pressure fluctuations and inertial terms
must be very delicate. If the mirror symmetry is broken in such a way that alternate
rolls are separated by surfaces inclined at angles +6 to the vertical the fluctuations
IT'(x,2,t) presumably act to drive a jet along the surfaces so that # increases to
produce a triangular structure, propagating with a speed » = {Av,. This picture
suggests that pressure fluctuations in the low-£ regime are responsible both for the
instability of standing waves and for the spatial form of travelling wave solutions.
Paradoxically, their velocity remains the same as in the Boussinesq regime.

Finally we note that this process provides a mechanism for thermal excitation of
travelling waves in vertical as well as horizontal magnetic fields. This would apply
to shallow convection zones in stars with strong magnetic fields, where F is large and
¢ is small. Sunspot umbrae are more complicated, since the effective value of {
increases with depth owing to ionization, but this mechanism could excite travelling
waves in sunspot penumbrae. The astrophysical implications of our results will be
discussed elsewhere.
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Appendix. The semi-implicit scheme

In our simulations of magnetoconvection with small Prandtl numbers, the time
step of our explicit numerical scheme is controlled by the thermal diffusion time.
However, the dynamical timescale is much longer, being comparable with the viscous
diffusion time. Hence it is useful to treat some of the terms explicitly and others
implicitly. To illustrate the semi-implicit scheme consider this simple advection—
diffusion equation in one dimension,

Uy = Uy + KUy (A1)
Our explicit Lax-Wendroff scheme would solve this equation in two steps. The first

time step advances the solution using forward differences. If 8¢ is the time step and
u" is the value of u at time step », then this first step has the form

w™t =y + 8w + kul,), (A 2)

where the spatial derivatives are represented by centred spatial differences. This
provisional step has only O(d¢) accuracy in time. The second step uses these first-
order-accurate values to advance the solution with centred differences

u™tE =y 4 20t (ul + kuli) (A 3)

thus giving O(d®) accuracy. For stability the time step of this explicit scheme is
limited by both the advective (8¢, oc 1/3z) and diffusive (8¢, oc 82%/k) mesh timescales,
where dx is the resolution of the spatial mesh.
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In our semi-implicit scheme, the first step remains unaltered. However, the
diffusive term is evaluated in the second step using the Crank—Nicolson method.
Hence the second step has the form

W = o 200 kB ), (34

This semi-implicit method assures stability for time steps larger than 8¢ while
retaining the same second-order accuracy as the Lax-Wendroff scheme. For very
large time steps the Crank-Nicolson scheme can produce unphysical oscillations
which possess very little damping. These oscillations must be negligible over any
natural timescale for the solutions to maintain accuracy. For &t > df_, the
amplification factor for one step is 4 & 1 — 8¢ _/8¢. If the smallest natural timescale is
T = Nét then we must have 4V < L. In practice we require 8t < (0.27°0¢,)t.

Applying this scheme to equation (2.4) leaves us with a Helmholtz equation with
variable coefficients for the temperature, which we solve at each even time step using
the method of multiple grids (Brandt 1984). The simplest implementation of this
method, where Gauss—Seidel relaxation is used at each level and linear interpolation
is used between levels, proved adequate. Our multigrid solver gives solutions
accurate to O(dz?) in four V-cycles, each four levels deep, for typical resolution. To
assure convergence we used ten cycles in our code.

The resulting semi-implicit code increased the usable time step by more than a
factor of three while requiring only 6% more CPU time per step. For the range of
parameters we consider, the Courant condition on wave propagation and advection
satisfies our accuracy criterion above. The code was tested both against the fully
explicit version and against growth rates predicted by linear analysis. In both cases
it agreed to within acceptable accuracy.
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